Effects of Graphene Nanoplatelets and Cellular Structure on the Thermal Conductivity of Polysulfone Nanocomposite Foams (original) (raw)
Polymers
Polysulfone (PSU) foams containing 0–10 wt% graphene nanoplatelets (GnP) were prepared using two foaming methods. Alongside the analysis of the cellular structure, their thermal conductivity was measured and analyzed. The results showed that the presence of GnP can affect the cellular structure of the foams prepared by both water vapor induced phase separation (WVIPS) and supercritical CO2 (scCO2) dissolution; however, the impact is greater in the case of foams prepared by WVIPS. In terms of thermal conductivity, the analysis showed an increasing trend by incrementing the amount of GnP and increasing relative density, with the tortuosity of the cellular structure, dependent on the used foaming method, relative density, and amount of GnP, playing a key role in the final value of thermal conductivity. The combination of all these factors showed the possibility of preparing PSU-GnP foams with enhanced thermal conductivity at lower GnP amount by carefully controlling the cellular struct...
Related papers
Nature Nanotechnology, 2014
High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expanded polystyrene and polyurethane have thermal conductivities that are too high for retrofitting or for building new, surface-efficient passive houses. Tailored materials such as aerogels and vacuum insulating panels are fragile and susceptible to perforation. Here, we show that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials. The foams are ultralight, show excellent combustion resistance and exhibit a thermal conductivity of 15 mW m(-1) K(-1), which is about half that of expanded polystyrene. At 30 °C and 85% relative humidity, the foams retained more than half of their initial strength. Our results show that nanoscale engineering is a promising strategy for producing foams with excellent properties using cellulose and other renewable nanosized fibrous materials.
Materials (Basel, Switzerland), 2018
The aim of this study was to enhance the thermal comfort properties of crude glycerol (CG) derived polyurethane foams (PUFs) using phase change materials (PCMs) (2.5⁻10.0% ()) to contribute to the reduction of the use of non-renewable resources and increase energy savings. The main challenge when adding PCM to PUFs is to combine the low conductivity of PUFs whilst taking advantage of the heat released/absorbed by PCMs to achieve efficient thermal regulation. The solution considered to overcome this limitation was to use expandable graphite (EG) (0.50⁻1.50% ()). The results obtained show that the use of PCMs increased the heterogeneity of the foams cellular structure and that the incorporation of PCMs and EG increased the stiffness of the ensuing composite PUFs acting as filler-reinforcing materials. However, these fillers also caused a substantial increase of the thermal conductivity and density of the ensuing foams which limited their thermal energy storage. Therefore, numerical si...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.