Freshwater diatoms as source of lipids for biofuel (original) (raw)
Abstract
Until recently, biodiesel production has been derived from terrestrial plants such as soybean and canola, leading to competition between biodiesel production and agricultural production for source materials. Microalgae have the potential to synthesize 30 times more oil per hectare than terrestrial plants without competing for agricultural land. We examined four genera (Cyclotella, Aulacoseira, Fragilaria, Synedra) of common freshwater diatoms (Bacillariophyceae) for growth and lipid content in deWned medium (sD11) that replicates hypereutrophic conditions in lakes and wastewater treatment plant eZuents and optimized the medium for silicon content. Cyclotella and Aulacoseira produced the highest levels of total lipids, 60 and 43 g total lipids/ml, respectively. Both diatoms are rich in fatty acids C14, C16, C16:1, C16:2,7,10, and C22:5n3. Of the diatoms examined, Cyclotella reached the highest population density (>2.5 £ 10 6 cells/ml) in stationary phase when many of the cells appeared to be Wlled entirely with oil. Silicon enrichment studies indicated that for optimal utilization of phosphorus and nitrogen by diatoms growing in wastewater eZuent, the amount of silicon present or added to the eZuent should be 17.5 times the mass of phosphorus in the eZuent. With high growth rates, high lipid contents, and rapid settling rates, Cyclotella and Aulacoseira are candidates for biodiesel production.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (47)
- Alonso DL, Segura del Castillo CI, Grima EM, Cohen Z (1996) First insights into improvement of eicosapentaenoic acid content in Phaeodactylum tricornutum (Bacillariophyceae) by induced mutagenesis. J Phycol 32:339-345
- Baliga R, Powers SE (2010) Sustainable algae biodiesel produc- tion in cold climates. Int J Chem Eng. doi:10.1155/2010/102179
- Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) EVects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64-73
- Cerón García MC, Fernández Sevilla JM, Acien Fernandez FG, Molina Grima E, García Camcho F (2000) Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid proWle. J Appl Phycol 12:239-248
- Cerón García MC, García Camacho F, Sánchez Mirón A, Fernán- dez Sevilla JM, Chisti Y, Molina Grima E (2006) Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J Microbiol Biotechnol 16:689-694
- Chen G-Q, Jiang Y, Chen F (2007) Fatty acid and lipid class com- position of the eicosapentaenoic acid-producing microalga, Nitzs- chia laevis. Food Chem 104:1580-1585
- Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294-306. doi:10.1016/j.biotechadv.2007.02.001
- Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Envi- ronmental life cycle comparison of algae to other bioenergy feed- stocks. Environ Sci Technol 44:1813-1819. doi:10.1021/ es902838n
- De la Pena MR (2007) Cell growth and nutritive value of the trop- ical benthic diatom, Amphora sp., at varying levels of nutrients and light intensity, and diVerent culture locations. J Appl Phycol 19:647-655
- Fabregas J, Otero A, Dominguez A, Patino M (2001) Growth rate of the microalga Tetraselmis suecica changes the biochemical composition of Artemia species. Mar Biotechnol 3:256-263
- Fuentes-Grünewald C, Garcés E, Rossi S, Camp J (2009) Use of the dinoXagellate Karlodinium veneWcum as a sustainable source of biodiesel production. J Ind Microbiol Biotechnol 36:1215- 1224. doi:10.1007/s10295-009-0602-3
- Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269-274. doi:10.1007/s10295-008-0495-6
- Graham JM, Lembi CA, Adrian HL, Spencer DF (1995) Physio- logical responses to temperature and irradiance in Spirogyra (Zyg- nematales, Charophyceae). J Phycol 31:531-540
- Graham JM, Auer MT, Canale RP, HoVmann JP (1982) Ecologi- cal studies and mathematical modeling of Cladophora in Lake Hu- ron: 4. Photosynthesis and respiration as functions of light and temperature. J Great Lakes Res 8:100-111
- GriYths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493-507. doi:10.1007/s10811-008-9392-7
- Guerin M, Huntley ME, Olaizola M (2003) Hematococcus asta- xanthin: applications for human health and nutrition. Trends Bio- technol 21:210-216
- Heredia-Arroyo T, Wei W, Hu B (2010) Oil accumulation via het- erotrophic/mixotrophic Chlorella protothecoides. Appl Biochem Biotechnol 162:1978-1995. doi:10.1007/s12010-010-8974-4
- HoVmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34:757-763
- Hoover SW, Marner WD II, Brownson AK, Lennen RM, Wittkopp TM, Yoshitani J, ZulkiXy S, Graham LE, Chaston S, McMahon KD, PXeger BF (2011) Bacterial production of free fatty acids from freshwater, macroalgal cellulose. Appl Microbiol Biotechnol 91:435-446. doi:10.1007/s00253-011-3344-x
- Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621-639
- Huntley ME, Redalje DG (2007) CO 2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Global Change 12:573-608. doi:10.1007/s11027-006-7304-1
- Koh LP (2007) Potential habitat and biodiversity losses from inten- siWed biodiesel feedstock production. Conserv Biol 21:1373-1375
- Lee YK (2001) Microbial mass culture systems and methods: their limitations and potential. J Appl Phycol 13:307-315
- Lennen RM, Braden DJ, West RM, Dumesic JA, PXeger BF (2010) A process for microbial hydrocarbon synthesis: overproduction of fatty acids in Escherichia coli and catalytic conversion to alkanes. Biotechnol Bioeng 106:193-202. doi:10.1002/bit.22660
- Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultiva- tion in bioreactors. Biotechnol Bioeng 98:764-771
- Liu X, Sheng J, Curtis R III (2011) Fatty acid production in genet- ically modiWed cyanobacteria. PNAS 108:6899-6904. doi:10.1073/ pnas.1103014108
- Lowe RL (1975) Comparative ultrastructure of the valves of some Cyclotella species (Bacillariophyceae). J Phycol 11:415-424
- McGinnis KM, Dempster TA, Sommerfeld MR (1997) Character- ization of the growth and lipid content of the diatom Chaetoceros muelleri. J Phycol 9:19-24
- Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotech- nol 66:486-496. doi:10.1007/s00253-004-1779-z
- Miron AS, Garcia MCC, Gomez AC, Camacho FG, Grima EM, Chisti Y (2003) Shear stress tolerance and biochemical character- ization of Phaeodactylum tricornutum in quasi steady-state contin- uous culture in outdoor photobioreactors. Biochem Engin J 16:287-297. doi:10.1016/s1369-703x(03)00072-x
- Patrick R, Reimer CW (1966) The diatoms of the United States, vol 1. The Academy of Natural Sciences of Philadelphia, Sutter House, Lititz
- Pew Center on Global Climate Change (2011) Transportation Overview. http://www.pewclimate.org/technology/overview/trans- portation
- Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635-648. doi:10.1007/ s00253-004-1647-x
- Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge
- Richmond A (1990) Large scale microalgal culture and applica- tions. Progress Phycol Res 7:269-330
- RodolW L, Zittelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost pho- tobioreactor. Biotechnol Bioeng 102:100-112
- Round FE, Crawford RM, Mann DG (1990) The diatoms: biology and morphology of the genera. Cambridge University Press, Cam- bridge
- ShaWk HM, Herodek S, Vörös L, Présing M, Kiss KT (1997) Growth of Cyclotella meneghiniana Kutz I. EVects of temperature, light and low rate of nutrient supply. Annls Limnol 33:139-147
- Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy's Aquatic Species Pro- gram: Biodiesel from Algae. Close-out report. National Renew- able Energy Lab, Department of Energy, Golden, Colorado, U.S.A. Report number NREL/TP-580-24190, dated July 1998
- Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Com- mercial applications of microalgae. J Biosci Bioeng 101:87-96. doi:10.1263/jbb.101.87
- USEPA (2008) Clean watersheds needs survey 2004, report to Congress. Appendix C, Table C-3. http://water.epa.gov/scitech/ datait/databases/cwns/toc.cfm
- Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth mod- iWes the response of Spirulina (Arthrospira) platensis (Cyanobac- teria) cells to light. J Phycol 36:675-679
- Watson SB, McCauley E, Downing JA (1997) Patterns in phyto- plankton taxonomic composition across temperate lakes of diVer- ent nutrient status. Limnol Oceanogr 42:487-495
- Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Natl Acad Sci 108:3809-3814. doi:10.1073/pnas.1009043108
- Xu H, Miao XL, Wu QY (2006) High-quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499-507
- Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under diVerent culture conditions. Appl Environ Microbiol 57:419-425
- Yu ET, Zendejas FJ, Lane PD, Gaucher S, Simmons BA, Lane TW (2009) Triacylglycerol accumulation and proWling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornu- tum (Bacillariophyceae) during starvation. J Appl Phycol 21:669- 681. doi:10.1007/s10811-008-9400-y