Permeabilization in a cerebral endothelial barrier model by pertussis toxin involves the PKC effector pathway and is abolished by elevated levels of cAMP (original) (raw)
Related papers
Toxins, 2016
Pertussis toxin (PTx), the major virulence factor of the whooping cough-causing bacterial pathogen Bordetella pertussis, permeabilizes the blood-brain barrier (BBB) in vitro and in vivo. Breaking barriers might promote translocation of meningitis-causing bacteria across the BBB, thereby facilitating infection. PTx activates several host cell signaling pathways exploited by the neonatal meningitis-causing Escherichia coli K1-RS218 for invasion and translocation across the BBB. Here, we investigated whether PTx and E. coli K1-RS218 exert similar effects on MAPK p38, NF-κB activation and transcription of downstream targets in human cerebral endothelial TY10 cells using qRT-PCR, Western blotting, and ELISA in combination with specific inhibitors. PTx and E. coli K1-RS218 activate MAPK p38, but only E. coli K1-RS218 activates the NF-κB pathway. mRNA and protein levels of p38 and NF-κB downstream targets including IL-6, IL-8, CxCL-1, CxCL-2 and ICAM-1 were increased. The p38 specific inhi...
Pertussis toxin induces angiogenesis in brain microvascular endothelial cells
Journal of Neuroscience Research, 2008
Pertussis toxin (PTX) is an ancillary adjuvant used to elicit experimental allergic encephalomyelitis (EAE), the principal autoimmune model of multiple sclerosis. One mechanism whereby PTX potentiates EAE is to increase blood-brain barrier (BBB) permeability. To elucidate further the mechanism of action of PTX on the BBB, we investigated the genomic and proteomic responses of isolated mouse brain endothelial cells (MBEC) following intoxication. Among 14,000 mouse genes tracked by cDNA microarray, 34 showed altered expression in response to PTX. More than one-third of these genes have roles in angiogenesis. Accordingly, we show that intoxication of MBEC induces tube formation in vitro and angiogenesis in vivo. The global effect of PTX on signaling protein levels and phosphorylation in MBEC was investigated by using Kinex antibody microarrays. In total, 113 of 372 pan-specific and 58 of 258 phospho-site-specific antibodies revealed changes 25% following intoxication. Increased STAT1 Tyr-701 and Ser-727 phosphorylation; reduced phosphorylation of the activating phospho-sites in Erk1, Erk2, and MAPKAPK2; and decreased phosphorylation of arrestin b1 Ser-412 and Hsp27 Ser-82 were confirmed by Kinetworks multi-immunoblotting. The importance of signal transduction pathways on PTX-induced MBEC tube formation was evaluated pharmacologically. Inhibition of phospholipase C, MEK1, and p38 MAP kinase had little effect, whereas inhibition of cAMPdependent protein kinase, protein kinase C, and phosphatidylinositol 3-kinase partially blocked tube formation. Taken together, these findings are consistent with the concept that PTX may lead to increased BBB permeability by altering endothelial plasticity and angiogenesis. V V C 2008 Wiley-Liss, Inc.
Pertussis toxin B-pentamer mediates intercellular transfer of membrane proteins and lipids
PloS one, 2013
Pertussis toxin (PTx) is the major virulence factor of Bordetella pertussis. The enzymatic or active (A) subunit inactivates host G protein coupled receptor (GPCR) signaling pathways. The non-enzymatic binding (B) subunit also mediates biological effects due to lectin-like binding characteristics, including the induction of T cell receptor (TCR) signaling and subsequent down-regulation of chemokine receptor expression. Here we report another activity attributable to PTxB, facilitating transfer of membrane material between mammalian cells. This activity does not require the TCR, and does not require cell-to-cell contact or cellular aggregation. Rather, membrane vesicles are transferred from donor to recipient cells in a toxin-dependent fashion. Membrane transfer occurs in different cell types, including cultured human T cells, CHO cells, and human primary peripheral blood mononuclear cells. Transfer involves both lipid and integral membrane proteins, as evidenced by the transfer of T...
Pertussis toxin is required for pertussis vaccine encephalopathy
Proceedings of the National Academy of Sciences, 1985
A mouse model for encephalopathy induced by pertussis immunization has been described; it has features that closely resemble some of the severe reactions, including seizures and a shock-like state leading to death, occasionally seen after administration of Bordetella pertusssis (whooping cough) vaccine. Susceptibility to encephalopathy maps to genes of the major histocompatibility complex and correlates as well with the genetic regulation of the level of antibody response to bovine serum albumin. In this study we have investigated which bacterial determinant is responsible for the encephalopathy. Two lines of evidence implicate pertussis toxin as the active bacterial component. Single-site mutants of B. pertussis with single affected virulence factors were tested. A mutant that produces a defective pertussis toxin had greatly diminished capacity to induce encephalopathy, whereas a hemolysinand adenylate-cyclase-deficient avirulent mutant had the same
In Vivo Models and In Vitro Assays for the Assessment of Pertussis Toxin Activity
Toxins
One of the main virulence factors produced by Bordetella pertussis is pertussis toxin (PTx) which, in its inactivated form, is the major component of all marketed acellular pertussis vaccines. PTx ADP ribosylates Gαi proteins, thereby affecting the inhibition of adenylate cyclases and resulting in the accumulation of cAMP. Apart from this classical model, PTx also activates some receptors and can affect various ADP ribosylation- and adenylate cyclase-independent signalling pathways. Due to its potent ADP-ribosylation properties, PTx has been used in many research areas. Initially the research primarily focussed on the in vivo effects of the toxin, including histamine sensitization, insulin secretion and leukocytosis. Nowadays, PTx is also used in toxicology research, cell signalling, research involving the blood–brain barrier, and testing of neutralizing antibodies. However, the most important area of use is testing of acellular pertussis vaccines for the presence of residual PTx. I...
Journal of Molecular Medicine, 2019
Pertussis toxin (PTX) is a potent virulence factor in patients suffering from whooping cough, but in its detoxified version, it is applied for vaccination. It is thought to contribute to the pathology of the disease including various CNS malfunctions. Based on its enzymatic activity, PTX disrupts GPCR-dependent signaling by modifying the α-subunit of heterotrimeric G i/o-proteins. It is also extensively used as a research tool to study neuronal functions in vivo and in vitro. However, data demonstrating the penetration of PTX from the blood into the brain are missing. Here, we examined the Gα i/o-modifying activity of PTX in murine brains after its parenteral application. Ex vivo biodistribution analysis of [ 124 I]-PTX displayed poor distribution to the brain while relatively high concentrations were visible in the pancreas. PTX affected CNS and endocrine functions of the pancreas as shown by open-field and glucose tolerance tests, respectively. However, while pancreatic islet Gα i/o-proteins were modified, their neuronal counterparts in brain tissue were resistant towards PTX as indicated by different autoradiographic and immunoblot SDS-PAGE analyses. In contrast, PTX easily modified brain Gα i/o-proteins ex vivo. An attempt to increase BBB permeability by application of hypertonic mannitol did not show PTX activity on neuronal G proteins. Consistent with these findings, in vivo MRI analysis did not point to an increased blood-brain barrier (BBB) permeability following PTX treatment. Our data demonstrate that the CNS is protected from PTX. Thus, we hypothesize that the BBB hinders PTX to penetrate into the CNS and to deliver its enzymatic activity to brain Gα i/o-proteins. Key messages & i.p. applied PTX is poorly retained in the brain while reaches high concentration in the pancreas. & Pancreatic islet Gα i/o-but not cerebral Gα i/o-proteins are modified by i.p. administered PTX. & Gα i/o-proteins from isolated cerebral cell membranes were easily modified by PTX ex vivo.
Cholera and Pertussis Toxins Reveal Multiple Regulation of cAMP Levels in the Rabbit Carotid Body
European Journal of Neuroscience, 1996
It is known that hypoxia (PO2 approximately equal to 66-18 mm Hg), acting via unknown receptors, increases carotid body cAMP levels in Ca(2+)-free solutions, indicating that low PO2 activates adenylate cyclases independently of the action of the released neurotransmitters. The aim of the present work was to investigate the involvement of G proteins in the genesis of the basal level of cAMP and on the increase in cAMP induced by low PO2. In carotid body homogenates, cholera toxin- and pertussis toxin-induced [32P]ADP-ribosylation of two protein bands of approximately equal to 42 and 45 kDa, and approximately equal to 39 and 40 kDa respectively; in both cases, prior incubation of the carotid bodies with the toxins reduced [32P]ADP-ribosylation by > 90%. In intact carotid bodies, cholera toxin treatment increased cAMP levels more in normoxic than in hypoxic organs, indicating that hypoxia releases neurotransmitters acting on receptors negatively coupled to adenylate cyclases. Cholera toxin-treated carotid bodies incubated in Ca(2+)-free solution had identical cAMP levels in normoxia and in hypoxia. In pertussis toxin-treated normoxic carotid bodies the cAMP level was close to control, but in pertussis toxin-treated hypoxic carotid bodies cAMP rose to a level similar to those seen in normoxic cholera toxin-treated organs, indicating that low PO2 releases neurotransmitters acting on receptors positively coupled to adenylate cyclases. Pertussis toxin-treated carotid bodies incubated in Ca(2+)-free solution lost their capacity to increase cAMP in response to hypoxia, indicating that a G protein sensitive to pertussis toxin is needed for this response. This implies that the carotid bodies express a pertussis toxin-sensitive G protein positively coupled to adenylate cyclases, or that a Gs protein requiring the cooperative action of Go/Gi donated beta gamma subunits mediates the increase in cAMP level produced by hypoxia.
Journal of Neuroimmunology, 2000
Parenteral injection of endotoxin has been used as a model to examine the role of pro-inflammatory cytokines in the centrally controlled responses to Gram-negative bacterial infection. However, the events that occur following mucosal exposure to live bacteria have received little attention. In this study, we have used a murine model to demonstrate that respiratory infection with Bordetella pertussis, which is associated with a number of systemic complications including fever, seizure and encephalopathy in children, resulted in persistent expression of mRNA transcripts for IL-1b and TNFa and transient expression of IL-6 in the hippocampus and hypothalamus. These changes correlated with elevated levels of cytokine protein in the same brain areas. The results demonstrate that infection at a mucosal surface can result in the induction of pro-inflammatory cytokine production in the brain and suggest that these locally synthesized mediators may contribute to the centrally controlled clinical manifestations of B. pertussis infection.
Pertussis Pathogenesis--What We Know and What We Don't Know
Journal of Infectious Diseases, 2014
Pertussis is a worldwide public health threat. Bordetella pertussis produces multiple virulence factors that have been studied individually, and many have recently been found to have additional biological activities. Nevertheless, how they interact to cause the disease pertussis remains unknown. New animal models, particularly the infection of infant baboons with B. pertussis, are enabling longstanding questions about pertussis pathogenesis to be answered and new ones to be asked. Enhancing our understanding of pathogenesis will enable new approaches to the prevention and control of pertussis.