A review of optimisation strategies used in simultaneous localisation and mapping (original) (raw)

Abstract

This paper provides a brief review of the different optimisation strategies used in mobile robot simultaneous localisation and mapping (SLAM) problem. The focus is on the optimisation based SLAM back end. The strategies are classified based on their purposes such as reducing the computational complexity, improving the convergence and improving the robustness. It is clearly pointed out that some approximations are made in some of the methods and there is always a trade-off between the computational complexity and the accuracy of the solution. The local submap joining is a strategy that has been used to address both the computational complexity and the convergence and is a flexible tool to be used in the SLAM back end. Although more research is needed to further improve the SLAM back end, nowadays there are quite a few relatively mature SLAM back end algorithms that can be used by SLAM researchers and users.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (57)

  1. Agarwal, P., Tipaldi, G. D., Spinello, L., Stachniss, C. & Burgard, M. (2013). Robust map optimization using dynamic covariance scaling, in Proc. IEEE Int. Conf. Robot. Autom., pp. 62-69.
  2. Agarwal, S., Mierle, K. (2016). Ceres Solver. http://ceres-solver.org
  3. Bai, F., Vidal-Calleja, T. and Huang, S. (2018). Robust Incremental SLAM Under Constrained Optimization Formulation. IEEE Robotics and Automation Letters, 3(2), pp.1207-1214.
  4. Bai, F., Huang, S., Vidal Calleja, T.A. and Zhang, Q. (2016, October). Incremental SQP method for constrained optimization formulation in SLAM. In IEEE International Confer- ence on Control, Automation, Robotics and Vision.
  5. Briales, J. & Gonzalez-Jimenez, J. (2017). Cartan-Sync: Fast and Global SE (d)- Synchronization, IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2127-2134.
  6. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I. & Leonard, J.J. (2016). Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age, IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309-1332.
  7. Carlone, L. (2013). Convergence analysis of pose graph optimization via Gauss-Newton meth- ods, in Proc. IEEE Int. Conf. Robot. Autom., pp. 965-972.
  8. Carlone, L. Censi, A. & Dellaert, F. (2014). Selecting good measurements via l 1 relaxation: A convex approach for robust estimation over graphs, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 2667-2674.
  9. Carlone, L., Tron, R., Daniilidis, K. & Dellaert, F. (2015). Initialization techniques for 3D SLAM: a survey on rotation estimation and its use in pose graph optimization, In Proc. IEEE Int. Conf. Robot. Autom., Seattle, WA, USA, pp. 4597-4604.
  10. Carlone, L., Calafiore, G., Tommolillo, C., & Dellaert, F. (2016). Planar pose graph optimiza- tion: Duality, optimal solutions, and verification, IEEE Transactions on Robotics. 32(3), 545-565.
  11. Carlone, L. & Calafiore, G.C., (2018). Convex relaxations for pose graph optimization with outliers. IEEE Robotics and Automation Letters, 3(2), pp.1160-1167.
  12. Carlevaris-Bianco, N. & Eustice, R. M. (2013). Generic factor-based node marginalization and edge sparsification for pose-graph SLAM, in Proc. IEEE Int. Conf. Robot. Autom., pp. 5748-5755.
  13. Dellaert, F. & Kaess, M. (2006). Square root SAM: Simultaneous localization and mapping via square root information smoothing, International Journal of Robotics Research, vol. 25, no. 12, pp. 1181-1203.
  14. Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H. & Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem, IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 229-241.
  15. Dubbelman, G. & Brownig, B. (2015). COP-SLAM: closed-form online pose-chain optimisation for visual SLAM, IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1194-1213.
  16. Furgale, P., Tong, C.H., Barfoot, T.D. & Sibley, G. (2015). Continuous-time batch trajectory estimation using temporal basis functions. The International Journal of Robotics Research, 34(14), pp.1688-1710.
  17. Graham, M. C., How, J. P., & Gustafson, D. E. (2015). Robust incremental slam with consistency-checking, in Proc. IEEE/RSJ Intell. Int. Conf. Robots Syst., pp. 117-124.
  18. Grisetti, G., Stachniss, C., & Burgard, W. (2009). Non-linear constraint network optimisation for efficient map learning, IEEE Transactions on Intelligent Transportation Systems, vol. 10, no. 3, pp. 428-439, 2009.
  19. Grisetti, G., Kummerle, R., Stachniss, C., Frese, U. & Hertzberg, C. (2010). Hierarchical optimisation on manifolds for online 2D and 3D mapping, In Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 273-278.
  20. Grisetti, G., Kummerle, R. & Ni, K. (2012). Robust optimisation of factor graphs by using con- densed measurements, In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 581-588.
  21. Hartley, R., Trumpf, J., Dai, Y. & Li, H. (2013). Rotation averaging, International Journal of Computer Vision, 103(3), 267-305.
  22. Huang, G., Kaess, M., & Leonard, J. J. (2013). Consistent sparsification for graph optimization, in Proc. Eur. Conf. Mobile Robots, pp. 150-157.
  23. Huang, S., Wang, Z., Dissanayake, G. & Frese, U. (2008). Iterated SLSJF: A sparse local submap joining algorithm with improved consistency, In Proc. Australasian Conference on Robotics and Automation.
  24. Huang, S., Wang, Z., Dissanayake, G., & Frese, U. (2009). Iterated D-SLAM map joining: Evaluating its performance in terms of consistency, accuracy and efficiency. Autonomous Robots, 27(4), 409-429.
  25. Huang, S., Lai, Y., Frese, U., & Dissanayake, G. (2010). How far is SLAM from a linear least squares problem? In Proc. International Conference on Intelligent Robots and Systems (IROS), pp. 3011-3016.
  26. Huang, S., Wang, H., Frese, H., & Dissanayake, G. (2012). On the number of local minima to the point feature based SLAM problem, In Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 2074-2079.
  27. Huber, P. J. (1964). Robust estimation of a location parameter, Ann. Math. Statist., vol. 35, no. 1, pp. 73-101.
  28. Ila, V., Porta, J. M., & Andrade-Cetto, J. (2010). Information-based compact pose SLAM, IEEE Trans. Robot., vol. vol. 26, no. 1, pp. 78-93.
  29. Ila, V., Polok, L., Solony, M., & Svoboda, P. (2017). SLAM++-A highly efficient and tem- porally scalable incremental SLAM framework, The International Journal of Robotics Re- search, vol. 36, no. 2, pp. 210-230.
  30. Kaess, M., Ranganathan, A. & Dellaert, F. (2008). iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1365-1378.
  31. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J. & Dellaert, F. (2012). iSAM2: Incremental smoothing and mapping using the Bayes tree, The International Journal of Robotics Research, vol. 31, no. 2, pp. 216-235.
  32. Khosoussi, K., Huang, S., & Dissanayake, G. (2016). A Sparse Separable SLAM Back-End. IEEE Trans. Robotics, 32(6), pp.1536-1549.
  33. Konolige K. & Agrawal, M. (2009). FrameSLAM: From Bundle Adjustment to Real-Time Visual Mapping, IEEE Transactions on Robitics, vol. 24, no. 5, pp. 1066-1077.
  34. Konolige, K., Grisetti, G., Kummerle, R., Limketkai, B., & Vincent, R. (2010). Efficient sparse pose adjustment for 2D mapping, In Proc. International Conference on Intelligent Robots and Systems (IROS), pp. 22-29.
  35. Kretzschmar, H., Stachniss, C. & Grisetti, G. (2011). Efficient informationtheoretic graph pruning for graph-based SLAM with laser range finders, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 865-871.
  36. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K. & Burgard, W. (2011). g2o: A general framework for graph optimisation, In Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 3607-3613.
  37. Latif, Y., Cadena, C., & Neira, J. (2013). Robust loop closing over time for pose graph SLAM, Int. J. Robot. Res., vol. 32, no. 14, pp. 1611-1626.
  38. Liu, M., Huang, S., Dissanayake, G., & Wang, H. (2012). A convex optimization based approach for pose SLAM problems, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., pp. 1898-1903.
  39. Lu, F., & Milios, E. (1997). Globally consistent range scan alignment for environment mapping, Autonomous Robots, vol. 4, pp. 333-349.
  40. Mazuran, M., Burgard, W., & Tipaldi, G. D. (2006). Nonlinear factor recovery for long-term SLAM, Int. J. Robot. Res., vol. 35, nos. 1-3, pp. 50-72.
  41. Montiel, J. M. M., Civera, J., & Davison, A. J. (2006). Unified inverse depth parametrization for monocular SLAM, in Proc. Robot., Sci. Syst. Conf., Aug. pp. 81-88.
  42. Ni, K., & Dellaert, F. (2010). Multi-level submap based SLAM using nested dissection, In Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2558-2565.
  43. Olson, E., & Agarwal, P. (2013). Inference on networks of mixtures for robust robot mapping, Int. J. Robot. Res., vol. 32, no. 7, pp. 826-840.
  44. Olson, E., Leonard, J., & Teller, S. (2006). Fast iterative optimisation of pose graphs with poor initial estimates, In Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 2262-2269.
  45. Rosen, D. M., DuHadway, C., & Leonard, J. J. (2015). A convex relaxation for approximate global optimization in simultaneous localization and mapping, In Proc. IEEE Int. Conf. Robot. Autom., Seattle, WA, USA, pp. 5822-5829.
  46. Rosen, D. M., Carlone, L., Bandeira, A. S., & Leonard, J. J. (2016). SE-Sync: A certifiably correct algorithm for synchronization over the special Euclidean group, In Proc. 12th Inter- national Workshop on the Algorithmic Foundations of Robotics (WAFR).
  47. Sola, J., Vidal-Calleja, T., Civera, J., & Montiel, J. M. M. (2012). Impact of landmark parametrization on monocular EKF-SLAM with points and lines, International journal of computer vision, vol. 97, no. 3, pp. 339-368.
  48. Sunderhauf, N., & Protzel, P. (2012). Towards a robust back end for pose graph SLAM, in Proc. IEEE Int. Conf. Robot. Autom., pp. 1254-1261.
  49. Wang, H., Hu, G., Huang, S., & Dissanayake, G. (2012). On the structure of nonlinearities in pose graph SLAM, In Proc. Robotics: Science and Systems (RSS).
  50. Wang, H., Huang, S., Frese, U,. & Dissanayake, G. (2013). The nonlinearity structure of point feature SLAM problems with spherical covariance matrices. Automatica, 49(10), pp.3112- 3119.
  51. Wang, H., Huang, S., Khosoussi, K., Frese, U., Dissanayake, G., & Liu, B. (2015). Dimension reduction for point feature SLAM problems with spherical covariance matrices, Automatica, vol. 51, pp. 149-157.
  52. Wang, H., Huang, S., Yang, G., & Dissanayake, G. (2018). Comparison of two different objec- tive functions in 2D point feature SLAM, Automatica, 97, 172-181.
  53. Zhang, J., Kaess, M., & Singh, S. (2016). On degeneracy of optimization-based state estimation problems, in Proc. IEEE Int. Conf. Robot. Autom., pp. 809-816.
  54. Zhang, T.,Wu, K., Song, J., Huang, S., & Dissanayake, G. (2017). Convergence and Consistency Analysis for a 3-D Invariant-EKF SLAM. IEEE Robotics and Automation Letters, 2(2), 733-740.
  55. Zhao, L., Huang, S., & Dissanayake, G. (2013). Linear SLAM: A linear solution to the feature based and pose graph SLAM based on submap joining, In Proc. International Conference on Intelligent Robots and Systems (IROS), pp. 24-30.
  56. Zhao, L., Huang, S. & Dissanayake, G. (2014). Linear MonoSLAM: A linear approach to large- scale monocular SLAM problems, In Proc. IEEE International Conference on Robotics and Automation (ICRA), pp. 1517-1523.
  57. Zhao, L., Huang, S., Sun, Y., Yan, L., & Dissanayake, G. (2015). ParallaxBA: bundle adjust- ment using parallax angle feature parametrization. The International Journal of Robotics Research, 34(4-5), 493-516. doi: 10.1177/0278364914551583