Enhancing Few-Shot Image Classification with Unlabelled Examples (original) (raw)
Related papers
Improving Few-Shot Visual Classification with Unlabelled Examples
ArXiv, 2020
We propose a transductive meta-learning method that uses unlabelled instances to improve few-shot image classification performance. Our approach combines a regularized Mahalanobis-distance-based soft k-means clustering procedure with a modified state of the art neural adaptive feature extractor to achieve improved test-time classification accuracy using unlabelled data. We evaluate our method on transductive few-shot learning tasks, in which the goal is to jointly predict labels for query (test) examples given a set of support (training) examples. We achieve new state of the art performance on Meta-Dataset, and produce competitive results on mini- and tiered-ImageNet benchmarks.
Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning
2021 IEEE/CVF International Conference on Computer Vision (ICCV), 2021
In few-shot learning scenarios, the challenge is to generalize and perform well on new unseen examples when only very few labeled examples are available for each task. Model-agnostic meta-learning (MAML) has gained the popularity as one of the representative few-shot learning methods for its flexibility and applicability to diverse problems. However, MAML and its variants often resort to a simple loss function without any auxiliary loss function or regularization terms that can help achieve better generalization. The problem lies in that each application and task may require different auxiliary loss function, especially when tasks are diverse and distinct. Instead of attempting to hand-design an auxiliary loss function for each application and task, we introduce a new meta-learning framework with a loss function that adapts to each task. Our proposed framework, named Meta-Learning with Task-Adaptive Loss Function (MeTAL), demonstrates the effectiveness and the flexibility across various domains, such as few-shot classification and few-shot regression. C. Semi-Supervised Inner-Loop Optimization Recently, metric-based meta-learning algorithms, such as the method from [15], have attempted to make full use of the unlabeled query set by exploiting its feature similarity with the labeled support set. Under such scenario (a.k.a. transductive setting), many recent metric-based meta-learning algorithms have achieved outstanding performance. On the other hand, the transductive setting or transductive inference is rarely explored among optimization-based learners. Recent few works [2, 9]
Few-Shot Classification By Few-Iteration Meta-Learning
2020
Learning in a low-data regime from only a few labeled examples is an important, but challenging problem. Recent advancements within meta-learning have demonstrated encouraging performance, in particular, for the task of few-shot classification. We propose a novel optimization-based meta-learning approach for few-shot classification. It consists of an embedding network, providing a general representation of the image, and a base learner module. The latter learns a linear classifier during the inference through an unrolled optimization procedure. We design an inner learning objective composed of (i) a robust classification loss on the support set and (ii) an entropy loss, allowing transductive learning from unlabeled query samples. By employing an efficient initialization module and a Steepest Descent based optimization algorithm, our base learner predicts a powerful classifier within only a few iterations. Further, our strategy enables important aspects of the base learner objective ...
ArXiv, 2022
Modern deep learning requires large-scale extensively labelled datasets for training. Few-shot learning aims to alleviate this issue by learning effectively from few labelled examples. In previously proposed few-shot visual classifiers, it is assumed that the feature manifold, where classifier decisions are made, has uncorrelated feature dimensions and uniform feature variance. In this work, we focus on addressing the limitations arising from this assumption by proposing a variance-sensitive class of models that operate in a low-label regime. The first method, Simple CNAPS, employs a hierarchically regularized Mahalanobis-distance based classifier combined with a state of the art neural adaptive feature extractor to achieve strong performance on Meta-Dataset, mini-ImageNet and tiered-ImageNet benchmarks. We further extend this approach to a transductive learning setting, proposing Transductive CNAPS. This transductive method combines a soft k-means parameter refinement procedure wit...
Fast Few-Shot Classification by Few-Iteration Meta-Learning
2021 IEEE International Conference on Robotics and Automation (ICRA), 2021
Autonomous agents interacting with the real world need to learn new concepts efficiently and reliably. This requires learning in a low-data regime, which is a highly challenging problem. We address this task by introducing a fast optimization-based meta-learning method for few-shot classification. It consists of an embedding network, providing a general representation of the image, and a base learner module. The latter learns a linear classifier during the inference through an unrolled optimization procedure. We design an inner learning objective composed of (i) a robust classification loss on the support set and (ii) an entropy loss, allowing transductive learning from unlabeled query samples. By employing an efficient initialization module and a Steepest Descent based optimization algorithm, our base learner predicts a powerful classifier within only a few iterations. Further, our strategy enables important aspects of the base learner objective to be learned during meta-training. To the best of our knowledge, this work is the first to integrate both induction and transduction into the base learner in an optimization-based meta-learning framework. We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach on four few-shot classification datasets. The Code is available at https://github.com/4rdhendu/FIML.
Few-Shot Image Classification: Current Status and Research Trends
Electronics
Conventional image classification methods usually require a large number of training samples for the training model. However, in practical scenarios, the amount of available sample data is often insufficient, which easily leads to overfitting in network construction. Few-shot learning provides an effective solution to this problem and has been a hot research topic. This paper provides an intensive survey on the state-of-the-art techniques in image classification based on few-shot learning. According to the different deep learning mechanisms, the existing algorithms are divided into four categories: transfer learning based, meta-learning based, data augmentation based, and multimodal based methods. Transfer learning based methods transfer useful prior knowledge from the source domain to the target domain. Meta-learning based methods employ past prior knowledge to guide the learning of new tasks. Data augmentation based methods expand the amount of sample data with auxiliary informati...
A Baseline for Few-Shot Image Classification
ArXiv, 2020
Fine-tuning a deep network trained with the standard cross-entropy loss is a strong baseline for few-shot learning. When fine-tuned transductively, this outperforms the current state-of-the-art on standard datasets such as Mini-ImageNet, Tiered-ImageNet, CIFAR-FS and FC-100 with the same hyper-parameters. The simplicity of this approach enables us to demonstrate the first few-shot learning results on the ImageNet-21k dataset. We find that using a large number of meta-training classes results in high few-shot accuracies even for a large number of few-shot classes. We do not advocate our approach as the solution for few-shot learning, but simply use the results to highlight limitations of current benchmarks and few-shot protocols. We perform extensive studies on benchmark datasets to propose a metric that quantifies the "hardness" of a few-shot episode. This metric can be used to report the performance of few-shot algorithms in a more systematic way.
On Label-Efficient Computer Vision: Building Fast and Effective Few-Shot Image Classifiers
2021
Modern deep learning requires large-scale extensively labelled datasets for training. Few-shot learning aims to alleviate this issue by learning effectively from few labelled examples. In previously proposed few-shot visual classifiers, it is assumed that the feature manifold arriving at the classifier has uncorrelated feature dimensions and uniform feature variance. In this work, we focus on addressing the limitations arising from this assumption by proposing a variancesensitive class of models that operates in a low-label regime. The first method, Simple CNAPS, employs a hierarchically regularized Mahalanobis-distance based classifier combined with a state of the art neural adaptive feature extractor to achieve strong performance on Meta-Dataset, mini-ImageNet and tiered-ImageNet benchmarks. We further extend this approach to a transductive learning setting, proposing Transductive CNAPS. This transductive method combines a soft k-means parameter refinement procedure with a two-ste...
A Reweighted Meta Learning Framework for Robust Few Shot Learning
ArXiv, 2020
Model-Agnostic Meta-Learning (MAML) is a popular gradient-based meta-learning framework that tries to find an optimal initialization to minimize the expected loss across all tasks during meta-training. However, it inherently assumes that the contribution of each instance/task to the meta-learner is equal. Therefore, it fails to address the problem of domain differences between base and novel classes in few-shot learning. In this work, we propose a novel and robust meta-learning algorithm, called RW-MAML, which learns to assign weights to training instances or tasks. We consider these weights to be hyper-parameters. Hence, we iteratively optimize the weights using a small set of validation tasks and an online approximation in a \emph{bi-bi-level} optimization framework, in contrast to the standard bi-level optimization in MAML. Therefore, we investigate a practical evaluation setting to demonstrate the scalability of our RW-MAML in two scenarios: (1) out-of-distribution tasks and (2)...
A Unified Few-Shot Classification Benchmark to Compare Transfer and Meta Learning Approaches
2021
Meta and transfer learning are two successful families of approaches to few-shot learning. Despite highly related goals, state-of-the-art advances in each family are measured largely in isolation of each other. As a result of diverging evaluation norms, a direct or thorough comparison of different approaches is challenging. To bridge this gap, we introduce a few-shot classification evaluation protocol named VTAB+MD with the explicit goal of facilitating sharing of insights from each community. We demonstrate its accessibility in practice by performing a cross-family study of the best transfer and meta learners which report on both a large-scale meta-learning benchmark (Meta-Dataset, MD), and a transfer learning benchmark (Visual Task Adaptation Benchmark, VTAB). We find that, on average, large-scale transfer methods (Big Transfer, BiT) outperform competing approaches on MD, even when trained only on ImageNet. In contrast, meta-learning approaches struggle to compete on VTAB when tra...