The Evolutionary Origin of Plasmodium falciparum (original) (raw)

Early Origin and Recent Expansion of Plasmodium falciparum

Science, 2003

The emergence of virulent Plasmodium falciparum in Africa within the past 6000 years as a result of a cascade of changes in human behavior and mosquito transmission has recently been hypothesized. Here, we provide genetic evidence for a sudden increase in the African malaria parasite population about 10,000 years ago, followed by migration to other regions on the basis of variation in 100 worldwide mitochondrial DNA sequences. However, both the world and some regional populations appear to be older (50,000 to 100,000 years old), suggesting an earlier wave of migration out of Africa, perhaps during the Pleistocene migration of human beings.

A Fresh Look at the Origin of Plasmodium falciparum, the Most Malignant Malaria Agent

PLoS Pathogens, 2011

From which host did the most malignant human malaria come: birds, primates, or rodents? When did the transfer occur? Over the last half century, these have been some of the questions up for debate about the origin of Plasmodium falciparum, the most common and deadliest human malaria parasite, which is responsible for at least one million deaths every year. Recent findings bring elements in favor of a transfer from great apes, but are these evidences really solid? What are the grey areas that remain to be clarified? Here, we examine in depth these new elements and discuss how they modify our perception of the origin and evolution of P. falciparum. We also discuss the perspectives these new discoveries open.

African monkeys are infected by Plasmodium falciparum nonhuman primate-specific strains

Proceedings of the National Academy of Sciences, 2011

Recent molecular exploration of the Plasmodium species circulating in great apes in Africa has revealed the existence of a large and previously unknown diversity of Plasmodium. For instance, gorillas were found to be infected by parasites closely related to Plasmodium falciparum, suggesting that the human malignant malaria agent may have arisen after a transfer from gorillas. Although this scenario is likely in light of the data collected in great apes, it remained to be ascertained whether P. falciparum-related parasites may infect other nonhuman primates in Africa. Using molecular tools, we here explore the diversity of Plasmodium species infecting monkeys in Central Africa. In addition to previously described Hepatocystis and Plasmodium species (Plasmodium gonderi and Plasmodium sp DAJ-2004), we have found one African monkey to be infected by a P. falciparum-related parasite. Examination of the nuclear and mitochondrial genomes of this parasite reveals that it is specific of nonhuman primates, indicating that P. falciparum-related pathogens can naturally circulate in some monkey populations in Africa. We also show that at least two distinct genetic entities of P. falciparum infect nonhuman primates and humans, respectively. Our discoveries bring into question the proposed gorilla origin of human P. falciparum.

Mosquito Vectors and the Globalization ofPlasmodium falciparumMalaria

Annual Review of Genetics, 2015

Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite ...

From the Cover: The origin of malignant malaria

Proceedings of The National Academy of Sciences, 2009

Plasmodium falciparum, the causative agent of malignant malaria, is among the most severe human infectious diseases. The closest known relative of P. falciparum is a chimpanzee parasite, Plasmodium reichenowi, of which one single isolate was previously known. The co-speciation hypothesis suggests that both parasites evolved separately from a common ancestor over the last 5-7 million years, in parallel with the divergence of their hosts, the hominin and chimpanzee lineages. Genetic analysis of eight new isolates of P. reichenowi, from wild and wild-born captive chimpanzees in Cameroon and Cô te d'Ivoire, shows that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite. The genetic lineage comprising the totality of global P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. This finding is inconsistent with the co-speciation hypothesis. Phylogenetic analysis indicates that all extant P. falciparum populations originated from P. reichenowi, likely by a single host transfer, which may have occurred as early as 2-3 million years ago, or as recently as 10,000 years ago. The evolutionary history of this relationship may be explained by two critical genetic mutations. First, inactivation of the CMAH gene in the human lineage rendered human ancestors unable to generate the sialic acid Neu5Gc from its precursor Neu5Ac, and likely made humans resistant to P. reichenowi. More recently, mutations in the dominant invasion receptor EBA 175 in the P. falciparum lineage provided the parasite with preference for the overabundant Neu5Ac precursor, accounting for its extreme human pathogenicity.

Malarial origins

Genome Biology

All members of the species Plasmodium falciparum seem to have been derived from a single recent ancestor. Significance and context The protozoan parasite Plasmodium falciparum causes malaria in humans. Its transmission and pathogenesis benefit from its genetic variation, which seriously affects attempts to combat this potentially deadly disease. An interesting feature of the malaria parasite is that DNA variation at silentthat is synonymous-sites in the coding sequences is very low, because of constraints in codon usage, whereas genetic variation in the proteins that act as antigenic determinants, or are involved in drug resistance or pathogenesis, is fairly large. On the other hand, microsatellite variation exists within and among subpopulations of P. falciparum. To investigate this genetic variation, the authors addressed the question of whether all extant P. falciparum cells have been derived from a single progenitor that spread through the human population by analyzing the intronic sequences of various P. falciparum genes. Introns are among the most rapidly evolving sequences in eukaryotes and are often used in studies of population structure.

The origin of malignant malaria

Proceedings of The National Academy of Sciences, 2009

Plasmodium falciparum, the causative agent of malignant malaria, is among the most severe human infectious diseases. The closest known relative of P. falciparum is a chimpanzee parasite, Plasmodium reichenowi, of which one single isolate was previously known. The co-speciation hypothesis suggests that both parasites evolved separately from a common ancestor over the last 5-7 million years, in parallel with the divergence of their hosts, the hominin and chimpanzee lineages. Genetic analysis of eight new isolates of P. reichenowi, from wild and wild-born captive chimpanzees in Cameroon and Cô te d'Ivoire, shows that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite. The genetic lineage comprising the totality of global P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. This finding is inconsistent with the co-speciation hypothesis. Phylogenetic analysis indicates that all extant P. falciparum populations originated from P. reichenowi, likely by a single host transfer, which may have occurred as early as 2-3 million years ago, or as recently as 10,000 years ago. The evolutionary history of this relationship may be explained by two critical genetic mutations. First, inactivation of the CMAH gene in the human lineage rendered human ancestors unable to generate the sialic acid Neu5Gc from its precursor Neu5Ac, and likely made humans resistant to P. reichenowi. More recently, mutations in the dominant invasion receptor EBA 175 in the P. falciparum lineage provided the parasite with preference for the overabundant Neu5Ac precursor, accounting for its extreme human pathogenicity.