Reduction of CM elliptic curves and modular function congruences (original) (raw)
Abstract
Here we investigate congruences for the coefficients of modular functions on SL 2 (ℤ). We obtain a simple criterion, in terms of the locus of supersingular j -invariants, which guarantees certain congruences. We implement this criterion in the case of modular functions obtained from Hilbert class polynomials.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (18)
- S. Ahlgren and K. Ono, Arithmetic of singular moduli and class equations, Compositio Mathematica 141 (2005), pages 293-312.
- W. Duke, Hyperbolic distribution problems and half-integral weight Maass forms, Invent. Math. 92 (1988), pages 73-90.
- B. Dwork, p-adic cycles, Inst. Hautes Études Sci. Publ. Math. 37 (1969), pages 27-115.
- Elkies, N.D.: The existence of infinitely many supersingular primes for every elliptic curve over Q, Invent. Math. 89 (1987), pages 561-567.
- B. Gross, Heights and the special values of L-series, Number Theory (Montreal, Quebec, 1985) CMS Conference Proc. 7, Amer. Math. Soc. (1987), pages 115-187.
- B. Gross and D. Zagier, On singular moduli, J. reine angew. Math. 355 (1985), pages 191-220.
- H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), pages 385-401.
- W. Kohnen, Newforms of half-integral weight, J. reine angew. Math. 333 (1982), pages 32-72.
- M. Koike, Congruences between modular forms and functions and applications to the con- jecture of Atkin, J. Fac. Sc. Univ. Tokyo, Sect. IA Math. 20 (1973), pages 129-169.
- S. Kudla, M. Rapoport, and T.H. Yang, The derivative of Eisenstein series and the Falt- ings's heights, Compos. Math. 140 (2004), pages 887-951.
- J. Lehner, Further congruence properties of the Fourier coefficients of the modular invariant j(τ ), Amer. J. Math. 71 (1949), pages 373-386.
- P. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points, Annals of Math. 160 (2004), pages 185-236.
- K. Ono and K. Soundararajan, Ramanujan's ternary quadratic form, Invent. Math. 130 (1997), pages 415-454.
- J.-P. Serre, Divisibilité de certaines fonctions arithmétiques, L'Enseign. Math. 22 (1976), pages 227-260.
- G. Shimura, On modular forms of half-integral weight, Ann. of Math. 97 (1973), pages 440-481.
- C.L. Siegel, Über die analytische Theorie der quadratischen Formen I, II, III, Ann. of Math. 36 (1935), pages 527-606; 37 (1936), pages 230-263; 38 (1937), pages 212-291.
- J. Silverman, The Arithmetic of Elliptic curves, Springer-Verlag, New York, 1986.
- J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1994.