Utilization of SSR and cDNA markers for screening known QTLs for late blight ( Phytophthora infestans ) resistance in potato (original) (raw)

Targeted and Untargeted Approaches Unravel Novel Candidate Genes and Diagnostic SNPs for Quantitative Resistance of the Potato (Solanum tuberosum L.) to Phytophthora infestans Causing the Late Blight Disease

The oomycete Phytophthora infestans causes late blight of potato, which can completely destroy the crop. Therefore, for the past 160 years, late blight has been the most important potato disease worldwide. The identification of cultivars with high and durable field resistance to P. infestans is an objective of most potato breeding programs. This type of resistance is polygenic and therefore quantitative. Its evaluation requires multi-year and location trials. Furthermore, quantitative resistance to late blight correlates with late plant maturity, a negative agricultural trait. Knowledge of the molecular genetic basis of quantitative resistance to late blight not compromised by late maturity is very limited. It is however essential for developing diagnostic DNA markers that facilitate the efficient combination of superior resistance alleles in improved cultivars. We used association genetics in a population of 184 tetraploid potato cultivars in order to identify single nucleotide polymorphisms (SNPs) that are associated with maturity corrected resistance (MCR) to late blight. The population was genotyped for almost 9000 SNPs from three different sources. The first source was candidate genes specifically selected for their function in the jasmonate pathway. The second source was novel candidate genes selected based on comparative transcript profiling (RNA-Seq) of groups of genotypes with contrasting levels of quantitative resistance to P. infestans. The third source was the first generation 8.3k SolCAP SNP genotyping array

Mapping the R10 and R11 genes for resistance to late blight (Phytophthora infestans) present in the potato (Solanum tuberosum) R-gene differentials of Black

Theoretical and Applied Genetics, 2006

The R10 and R11 late blight differentials of Black (tetraploid clones 3681ad1 and 5008ab6) were crossed with the susceptible potato (Solanum tuberosum) cultivar Maris Piper and the progeny were assessed for blight resistance in a whole plant glasshouse test using race 1,2,3,4,6,7 of Phytophthora infestans. The disease scores for the R10 population displayed a continuous distribution whereas the progeny in the R11 population could be categorised as resistant or susceptible. A bulk segregant analysis using amplified fragment length polymorphism assays was done on the ten most resistant and ten most susceptible progeny in each population and two closely linked markers were found to be associated with resistance. R11 mapped to 8.5 cM from marker PAG/MAAG_172.3 and R10 mapped as a quantitative trait locus in which marker PAC/MATC_264.1 explained 56.9% of the variation in disease scores. The results were consistent with R10 and R11 being allelic versions of genes at the R3 locus on chromosome 11. The implications are discussed for mapping R-genes which fail to give complete immunity to a pathogen.

A novel approach to locate Phytophthora infestans resistance genes on the potato genetic map

2010

Mapping resistance genes is usually accomplished by phenotyping a segregating population for the resistance trait and genotyping it using a large number of markers. Most resistance genes are of the NBS-LRR type, of which an increasing number is sequenced. These genes and their analogs (RGAs) are often organized in clusters. Clusters tend to be rather homogenous, viz. containing genes that show high sequence similarity with each other. From many of these clusters the map position is known. In this study we present and test a novel method to quickly identify to which cluster a new resistance gene belongs and to produce markers that can be used for introgression breeding. We used NBS proWling to identify markers in bulked DNA samples prepared from resistant and susceptible genotypes of small segregating populations. Markers co-segregating with resistance can be tested on individual plants and directly used for breeding. To identify the resistance gene cluster a gene belongs to, the fragments were sequenced and the sequences analyzed using bioinformatics tools. Putative map positions arising from this analysis were validated using markers mapped in the segregating population. The versatility of the approach is demonstrated with a number of populations derived from wild Solanum species segregating for P. infestans resistance. Newly identiWed P. infestans resistance genes originating from S. verrucosum, S. schenckii, and S. capsicibaccatum could be mapped to potato chromosomes 6, 4, and 11, respectively. program of the Centre of Biosystems Genomics (CBSG) which is part of the Netherlands Genomics Initiative/Netherlands Organization for ScientiWc Research. We thank Agrico Research B.V. for kindly providing populations ver03-292 and ver03-394. Furthermore, we thank the following persons for their contribution to the experimental part of this project: Roel Hoekstra (Centre for Genetic Resources, The Netherlands), Gerard van der Linden, Linda Kodde, Martijn van Kaauwen, Christel Denneboom, Dirk Budding, Ronald Hutten (all WUR Plant Breeding, Wageningen University and Research Centre), Guus Heselmans (Meijer B.V. The Netherlands) and Sjefke Allefs (Agrico Research B.V.). Gerard van der Linden and Sjefke Allefs are thanked for useful comments on earlier versions of the manuscript.

Quantitative Resistance to Phytophthora infestans in Potato: A Case Study for QTL Mapping in an Allogamous Plant Species

1994

Phytophthora infestans is the most important fungal pathogen in the cultivated potato (Solanum tuberosum). Dominant, race-specific resistance alleles and quantitative resistance-the latter being more important for potato breeding-are found in the germplasm of cultivated and wild potato species. Quantitative trait loci (QTLs) for resistance to two races of P . infestans have been mapped in an F, progeny of a cross between non-inbred diploid potato parents with multiple alleles. Interval mapping methods based on highly informative restriction fragment length polymorphism markers revealed 11 chromosome segments on 9 potato chromosomes showing significant contrasts between marker genotypic classes. Whereas phenotypically no difference in quantitative resistance response was observed between the two fungal races, QTL mapping identified at least one race specific QT locus. Two QT regions coincided with two small segments on chromosomes Vand XZI to which the dominant alleles R1, conferring race specific resistance to P. infestans, Rxl and Rx2, both inducing extreme resistance to potato virus X, have been allocated in independent mapping experiments. Some minor QTLs were correlated with genetic loci for specific proteins related to pathogenesis, the expression of which is induced after infection with P. infestans.

The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes

Plant Journal, 2002

Late blight caused by the oomycete Phytophthora infestans is the most destructive disease in potato cultivation worldwide. New, more virulent P. infestans strains have evolved which overcome the genetic resistance that has been introgressed by conventional breeding from wild potato species into commercial varieties. R genes (for single-gene resistance) and genes for quantitative resistance to late blight are present in the germplasm of wild and cultivated potato. The molecular basis of single-gene and quantitative resistance to late blight is unknown. We have cloned R1, the ®rst gene for resistance to late blight, by combining positional cloning with a candidate gene approach. The R1 gene is member of a gene family. It encodes a protein of 1293 amino acids with a molecular mass of 149.4 kDa. The R1 gene belongs to the class of plant genes for pathogen resistance that have a leucine zipper motif, a putative nucleotide binding domain and a leucine-rich repeat domain. The most closely related plant resistance gene (36% identity) is the Prf gene for resistance to Pseudomonas syringae of tomato. R1 is located within a hot spot for pathogen resistance on potato chromosome V. In comparison to the susceptibility allele, the resistance allele at the R1 locus represents a large insertion of a functional R gene.

The R Pi-mcd1 Locus from Solanum microdontum Involved in Resistance to Phytophthora infestans , Causing a Delay in Infection, Maps on Potato Chromosome 4 in a Cluster of NBS-LRR Genes

Molecular Plant-Microbe Interactions, 2008

The distinction between field resistance and resistance based on resistance (R) genes has been proven valid for many plant–pathogen interactions. This distinction does not seem to be valid for the interaction between potato and late blight. In this study, a locus involved in late blight resistance, derived from Solanum microdontum, provides additional evidence for this lack of distinction. The resistance is associated with a hypersensitive response and results in a delay of infection of approximately 1 to 2 weeks. Both a quantitative as well as a qualitative genetic approach were used, based on data from a field assay. Quantitative trait locus (QTL) analysis identified a QTL on chromosome 4 after correction of the resistance data for plant maturity. A qualitative genetic analysis resulted in the positioning of this locus on the short arm of chromosome 4 in between amplified fragment length polymorphism marker pCTmACG_310 and cleaved amplified polymorphic sequence markers TG339 and T...

Progress in Mapping and Cloning Qualitative and Quantitative Resistance Against Phytophthora infestans in Potato and Its Wild Relatives

Potato Research, 2009

Cultivated potato is susceptible to many pests and pathogens, none of which is more of a threat to potato agriculture than the late blight disease, caused by the oomycete Phytophthora infestans (Mont.) de Bary. To date all efforts to thwart this most adaptive of pathogens have failed, and early attempts to deploy 'R genes' introgressed from the wild Mexican hexaploid Solanum demissum ended in abject failure. With the advent of facile gene mapping and cloning, allied to knowledge of plant resistance gene structure, renewed efforts are leading to mapping and isolation of new sources of late blight resistance in potato wild species, many of which are being performed under the auspices of the BIOEXPLOIT project (Sub-project 2). We document recent advances in late blight resistance gene mapping and isolation, and postulate how these genes, allied to knowledge of pathogen effectors and their recognition specificity, may greatly enhance our chances of halting the progress of late blight disease in potato crops worldwide.

The R3 Resistance to Phytophthora infestans in Potato is Conferred by Two Closely Linked R Genes with Distinct Specificities

Molecular Plant-Microbe Interactions, 2004

The R3 locus of potato (Solanum tuberosum L.) confers full resistance to avirulent isolates of Phytophthora infestans, the causal agent of late blight. R3 resides in the distal part of chromosome 11 and segregates in a potato mapping population, from which a well-saturated amplified fragment length polymorphism map is available. Using a population of 1,748 plants, we constructed a high-resolution genetic map at the R3 locus. Using the combination of fine mapping and accurate disease testing with specific P. infestans isolates, we detected that the R3 locus is composed of two genes with distinct specificities. The two genes R3a and R3b are 0.4 cM apart and have both been introgressed from S. demissum, the ‘donor’ species of most characterized race-specific R genes to P. infestans. A natural recombinant between R3a and R3b was discovered in one accession of S. demissum. The synteny between the R3 locus and the tomato I2 locus is discussed.

Identification and rapid mapping of a gene conferring broad-spectrum late blight resistance in the diploid potato species Solanum verrucosum through DNA capture technologies

TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, 2018

A broad-spectrum late blight disease-resistance gene from Solanum verrucosum has been mapped to potato chromosome 9. The gene is distinct from previously identified-resistance genes. We have identified and characterised a broad-spectrum resistance to Phytophthora infestans from the wild Mexican species Solanum verrucosum. Diagnostic resistance gene enrichment (dRenSeq) revealed that the resistance is not conferred by previously identified nucleotide-binding, leucine-rich repeat genes. Utilising the sequenced potato genome as a reference, two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (Generic-mapping enrichment Sequencing; GenSeq), respectively, were deployed for the rapid, SNP-based mapping of the resistance through bulked-segregant analysis. Both approaches independently positioned the resistance, referred to as Rpi-ver1, to the distal end of potato chromosome 9. Stringent post-enrichment read filtering identified a t...