Mechanical response of electrical cables to imposed motion (original) (raw)
Engineering Structures, 2005
Abstract
A theoretical and experimental study of mechanical properties of electrical cables with multi order helical structure has been performed. Relations between applied deformations and local strains in the first order helical structure have been developed. The model is then generalized with a hierarchical approach where the strains at any order helical structure are expressed as functions of strains in the upper order helix under the assumption that all components are sticking to each other. The force balance between the strains and the friction forces is considered. When the cable is exposed to small bending curvature, the slippage of the component is prevented by the frictional force. At this stage, the components of the cable behave as solid beams. Slippage occurs between the components when the tensile force in the components overcomes the frictional force. This state occurs at sufficiently large bending curvatures and results in a variable bending stiffness varying with the magnitu...
Kenta Inagaki hasn't uploaded this paper.
Let Kenta know you want this paper to be uploaded.
Ask for this paper to be uploaded.