Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger (original) (raw)
Related papers
Vanillin production by biotransformation of phenolic compounds in fungus, Aspergillus luchuensis
AMB Express
Vanillin is valuable and popular flavor used in foods and cosmetics. Many bacteria species have the ability to decarboxylate substituted cinnamic acids in order to form vanillin. However, the phenolic biotransformation including vanillin production in a common fungus, the Aspergillus luchuensis, which is used in distilled beverages, has not yet been clarified. This study focused on elucidating the vanillin production due to phenolic biotransformation in A. luchuensis during fermentation. The phenolic metabolites were extracted by a solid phase column and they were determined using on LC/MS and LC/MS/MS in a selective ion mode. As a result, ferulic acid, vanillin and vanillic acid, were detected in the rice koji fermentationed by A. luchuensis and also fermentated with yeast. In addition, the accurate molecular formula of vanillin glucoside (C 14 H 17 O 8 , 313.0927, (M-H) − and its production ions was also determined by HRESI-mass spectrometry. Based on the results including the phenolic metabolites and related genes found in A. luchuensis genome, this study proposed the vanillin production mechanism due to the side chain cleavage of ferulic acid through Coenzyme A (CoA) and feruloyl-CoA hydratase/lyase, to form vanillin and acetyl-COA. In this study, another possible vanillin production pathway also was proposed due to the neutral hexose hydrolysis of vanillin glucoside. The subsequent dehydrogenation of vanillin produced vanillic acid. In addition, vanillin was detected in the distilled alcohol indicating its contribution to the aroma profile of beverages. It has been unknown that the vanillin in the distilled solution is derived from the vanillin produced during rice-koji and/or moromi mash fermentations.
Microbial Cell Factories, 2021
Background The aromatic compounds vanillin and vanillic acid are important fragrances used in the food, beverage, cosmetic and pharmaceutical industries. Currently, most aromatic compounds used in products are chemically synthesized, while only a small percentage is extracted from natural sources. The metabolism of vanillin and vanillic acid has been studied for decades in microorganisms and many studies have been conducted that showed that both can be produced from ferulic acid using bacteria. In contrast, the degradation of vanillin and vanillic acid by fungi is poorly studied and no genes involved in this metabolic pathway have been identified. In this study, we aimed to clarify this metabolic pathway in Aspergillus niger and identify the genes involved. Results Using whole-genome transcriptome data, four genes involved in vanillin and vanillic acid metabolism were identified. These include vanillin dehydrogenase (vdhA), vanillic acid hydroxylase (vhyA), and two genes encoding no...