Twenty-First Century Glucocorticoid Receptor Molecular Biology (original) (raw)
Related papers
Glucocorticoid receptor recruits to enhancers and drives activation by motif-directed binding
Genome research, 2018
Glucocorticoids are potent steroid hormones that regulate immunity and metabolism by activating the transcription factor (TF) activity of glucocorticoid receptor (GR). Previous models have proposed that DNA binding motifs and sites of chromatin accessibility predetermine GR binding and activity. However, there are vast excesses of both features relative to the number of GR binding sites. Thus, these features alone are unlikely to account for the specificity of GR binding and activity. To identify genomic and epigenetic contributions to GR binding specificity and the downstream changes resultant from GR binding, we performed hundreds of genome-wide measurements of TF binding, epigenetic state, and gene expression across a 12-h time course of glucocorticoid exposure. We found that glucocorticoid treatment induces GR to bind to nearly all pre-established enhancers within minutes. However, GR binds to only a small fraction of the set of accessible sites that lack enhancer marks. Once GR...
Modulation of transcription parameters in glucocorticoid receptor-mediated repression
Molecular and Cellular Endocrinology, 2008
Glucocorticoid receptors (GRs) affect both gene induction and gene repression. The disparities of receptor binding to DNA and increased vs. decreased gene expression have suggested significant mechanistic differences between GR-mediated induction and repression. Numerous transcription factors are known to modulate three parameters of gene induction: the total activity (V max ) and position of the dose-response curve with glucocorticoids (EC 50 ) and the percent partial agonist activity with antiglucocorticoids. We have examined the effects on GR-mediated repression of five modulators (coactivators TIF2 [GRIP1, SRC-2] and SRC-1, corepressor SMRT, and comodulators STAMP and Ubc9), a glucocorticoid steroid (deacylcortivazol [DAC]) of very different structure, and an inhibitor of histone deacetylation (trichostatin A [TSA]). These factors interact with different domains of GR and thus are sensitive topological probes of GR action. These agents altered the V max , EC 50 , and percent partial agonist activity of endogenous and exogenous repressed genes similarly to that previously observed for GR-regulated gene induction. Collectively, these results suggest that GR-mediated induction and repression share many of the same molecular interactions and that the causes for different levels of gene transcription arise from more distal downstream steps.
Determinants of Cell- and Gene-Specific Transcriptional Regulation by the Glucocorticoid Receptor
PLoS Genetics, 2007
The glucocorticoid receptor (GR) associates with glucocorticoid response elements (GREs) and regulates selective gene transcription in a cell-specific manner. Native GREs are typically thought to be composite elements that recruit GR as well as other regulatory factors into functional complexes. We assessed whether GR occupancy is commonly a limiting determinant of GRE function as well as the extent to which core GR binding sequences and GRE architecture are conserved at functional loci. We surveyed 100-kb regions surrounding each of 548 known or potentially glucocorticoidresponsive genes in A549 human lung cells for GR-occupied GREs. We found that GR was bound in A549 cells predominately near genes responsive to glucocorticoids in those cells and not at genes regulated by GR in other cells. The GREs were positionally conserved at each responsive gene but across the set of responsive genes were distributed equally upstream and downstream of the transcription start sites, with 63% of them .10 kb from those sites. Strikingly, although the core GR binding sequences across the set of GREs varied extensively around a consensus, the precise sequence at an individual GRE was conserved across four mammalian species. Similarly, sequences flanking the core GR binding sites also varied among GREs but were conserved at individual GREs. We conclude that GR occupancy is a primary determinant of glucocorticoid responsiveness in A549 cells and that core GR binding sequences as well as GRE architecture likely harbor gene-specific regulatory information.
Glucocorticoid receptor control of transcription: precision and plasticity via allostery
Nature Reviews Molecular Cell Biology
The glucocorticoid receptor (GR) is a constitutively expressed transcriptional regulatory factor (TRF) that controls many distinct gene networks, each uniguely determined by particular cellular and physiological contexts. The precision of GR-mediated responses seems to depend on combinatorial, context-specific assembly of GR-nucleated transcription regulatory complexes at genomic response elements. In turn, evidence suggests that context-driven plasticity is conferred by the integration of multiple signals, each serving as an allosteric effector of GR conformation, a key determinant of regulatory complex composition and activity. This structural and mechanistic perspective on GR regulatory specificity is likely to extend to other eukaryotic TRFs. Control of gene transcription is critical for development, physiology and homeostasis. Thus, aberrant transcription regulation commonly drives disease processes. Transcriptional regulatory factors (TRFs) have a critical role in this process by recognizing specific DNA sequences to activate or repress the expression of specific genes. One of the bestcharacterized metazoan TRFs is glucocorticoid receptor (GR), the founding member of the nuclear receptor superfamily-proteins that evolved to bind specific small lipophilic signalling molecules 1. Expressed in nearly all vertebrate cells, GR directly up-and downregulates thousands of genes distinct to the cell type, governing various aspects of development, metabolism, stress response, inflammation and other key tissue and organismal processes. GR is encoded by the nuclear receptor subfamily 3 group C member 1 (NR3C1) gene, which is located on chromosome 5 (5q31) and is closely related to its paralogues NR3C2, which encodes mineralocorticoid receptor (MR), NR3C3, which encodes progesterone receptor (PR), and NR3C4, which encodes androgen receptor (AR). These four nuclear receptors share a common domain structure consisting of an amino-terminal domain (NTD), a zinc-finger
Glucocorticoid Receptor-Dependent Gene Regulatory Networks
PLoS Genetics, 2005
While the molecular mechanisms of glucocorticoid regulation of transcription have been studied in detail, the global networks regulated by the glucocorticoid receptor (GR) remain unknown. To address this question, we performed an orthogonal analysis to identify direct targets of the GR. First, we analyzed the expression profile of mouse livers in the presence or absence of exogenous glucocorticoid, resulting in over 1,300 differentially expressed genes. We then executed genome-wide location analysis on chromatin from the same livers, identifying more than 300 promoters that are bound by the GR. Intersecting the two lists yielded 53 genes whose expression is functionally dependent upon the ligand-bound GR. Further network and sequence analysis of the functional targets enabled us to suggest interactions between the GR and other transcription factors at specific target genes. Together, our results further our understanding of the GR and its targets, and provide the basis for more targeted glucocorticoid therapies. Citation: Le PP, Friedman JR, Schug J, Brestelli JE, Parker JB, et al. (2005) Glucocorticoid receptor-dependent gene regulatory networks. PLoS Genet 1(2): e16.
Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity
Biochemical and Biophysical Research Communications, 2009
The human glucocorticoid receptor (GR) gene produces C-terminal GRβ and GRα isoforms through alternative use of specific exons 9β and α, respectively. We explored the transcriptional activity of GRβ on endogenous genes by developing HeLa cells stably expressing EGFP-GRβ or EGFP. Microarray analyses revealed that GRβ had intrinsic gene-specific transcriptional activity, regulating mRNA expression of a large number of genes negatively or positively. Majority of GRβ-responsive genes was distinct from those modulated by GRα, while GRβ and GRα mutually modulated each other's transcriptional activity in a subpopulation of genes. We did not observe in HCT116 cells nuclear translocation of GRβ and activation of this receptor by RU 486, a synthetic steroid previously reported to bind GRβ and to induce nuclear translocation. Our results indicate that GRβ has intrinsic, GRα-independent, gene-specific transcriptional activity, in addition to its previously reported dominant negative effect on GRα-induced transactivation of GRE-driven promoters.
Nucleic Acids Research, 2008
The transcription start sites (TSS) and promoters of many genes are located in upstream CpG islands. Methylation within such islands is known for both imprinted and oncogenes, although poorly studied for other genes, especially those with complex CpG islands containing multiple first exons and promoters. The glucocorticoid receptor (GR) CpG island contains seven alternative first exons and their promoters. Here we show for the five GR promoters activated in PBMCs that methylation patterns are highly variable between individuals. The majority of positions were methylated at levels >25% in at least one donor affecting each promoter and TSS. We also examined the evolutionarily conserved transcription factor binding sites (TFBS) using an improved in silico phylogenetic footprinting technique. The majority of these contain methylatable CpG sites, suggesting that methylation may orchestrates alternative first exon usage, silencing and controlling tissue-specific expression. The heterogeneity observed may reflect epigenetic mechanisms of GR fine tuning, programmed by early life environment and events. With 78% of evolutionarily conserved alternative first exons falling into such complex CpG islands, their internal structure and epigenetic modifications are bound to be biologically important, and may be a common transcriptional control mechanism used throughout many phyla.
Molecular and Cellular Biology, 2013
Glucocorticoids are among the most potent and effective agents for treating inflammatory diseases and hematological cancers. However, subpopulations of patients are often resistant to steroid therapy, and determining the molecular mechanisms that contribute to glucocorticoid resistance is thus critical to addressing this clinical problem affecting patients with chronic inflammatory disorders. Since the cellular level of the glucocorticoid receptor (GR) is a critical determinant of glucocorticoid sensitivity and resistance, we investigated the molecular mechanisms mediating repression of glucocorticoid receptor gene expression. We show here that glucocorticoid-induced repression of GR gene expression is mediated by inhibition of transcription initiation. This process is orchestrated by the recruitment of agonist-bound GR to exon 6, followed by the assembly of a GR-NCoR1-histone deacetylase 3-containing repression complex at the transcriptional start site of the GR gene. A functional ...
Cell, 2011
The glucocorticoid (GC) receptor (GR), when liganded to GC, activates transcription through direct binding to simple (+)GRE DNA binding sequences (DBS). GC-induced direct repression via GR binding to complex ''negative'' GREs (nGREs) has been reported. However, GR-mediated transrepression was generally ascribed to indirect ''tethered'' interaction with other DNA-bound factors. We report that GC-induces direct transrepression via the binding of GR to simple DBS (IR nGREs) unrelated to (+)GRE. These DBS act on agonist-liganded GR, promoting the assembly of cisacting GR-SMRT/NCoR repressing complexes. IR nGREs are present in over 1000 mouse/human ortholog genes, which are repressed by GC in vivo. Thus variations in the levels of a single ligand can coordinately turn genes on or off depending in their response element DBS, allowing an additional level of regulation in GR signaling. This mechanism suits GR signaling remarkably well, given that adrenal secretion of GC fluctuates in a circadian and stress-related fashion. CYP24 A1 GPX3 Relative RNA leve Wildtype RXRαβ ep-/-GR ep-/-Wildtype