The Heliconius Genome Consortium, Kanchon K Dasmahapatra1,, James R. Walters2, (original) (raw)
Related papers
Genomic Hotspots for Adaptation: The Population Genetics of Müllerian Mimicry in Heliconius erato
PLoS Genetics, 2010
Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as ''supergenes.'' Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.
Selection overrides gene flow to break down maladaptive mimicry
Nature, 2008
Predators typically avoid dangerous species, and batesian mimicry evolves when a palatable species (the ‘mimic’) co-opts a warning signal from a dangerous species (the ‘model’) and thereby deceives its potential predators. Because predators would not be under selection to avoid the model and any of its look-alikes in areas where the model is absent (that is, allopatry), batesian mimics should occur only in sympatry with their model. However, contrary to this expectation, batesian mimics often occur in allopatry. Here we focus on one such example—a coral snake mimic. Using indirect DNA-based methods, we provide evidence suggesting that mimics migrate from sympatry, where mimicry is favoured, to allopatry, where it is disfavoured. Such gene flow is much stronger in nuclear genes than in maternally inherited mitochondrial genes, indicating that dispersal by males may explain the presence of mimetic phenotypes in allopatry. Despite this gene flow, however, individuals from allopatry resemble the model less than do individuals from sympatry. We show that this breakdown of mimicry probably reflects predator mediated selection acting against individuals expressing the more conspicuous mimetic phenotype in allopatry. Thus, although gene flow may explain why batesian mimics occur in allopatry, natural selection may often override such gene flow and promote the evolution of non-mimetic phenotypes in such areas.
Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus
Journal of Evolutionary Biology, 2004
Ecological divergence can cause speciation if adaptive traits have pleiotropic effects on mate choice. In Heliconius butterflies, mimetic patterns play a role in mate detection between sister species, as well as signalling to predators. Here we show that male butterflies from four recently diverged parapatric populations of Heliconius melpomene are more likely to approach and court their own colour patterns as compared with those of other races. A few exceptions, where males were more attracted to patterns other than their own, suggest that some mimetic patterns are sub-optimal in mate choice. Genotype frequencies in hybrid zones between races of H. melpomene suggest that mating is random, so reinforcement is unlikely to have played a role in intra-specific divergence. In summary, co-evolved divergence of colour pattern and mate preference occurs rapidly and is likely the first step in Heliconius speciation.
Heredity
Unravelling the genetic basis of adaptive traits is a major challenge in evolutionary biology. Doing so informs our understanding of evolution towards an adaptive optimum, the distribution of locus effect sizes, and the influence of genetic architecture on the evolvability of a trait. In the Müllerian co-mimics Heliconius melpomene and Heliconius erato some Mendelian loci affecting mimicry shifts are well known. However, several phenotypes in H. melpomene remain to be mapped, and the quantitative genetics of colour pattern variation has rarely been analysed. Here we use quantitative trait loci (QTL) analyses of crosses between H. melpomene races from Peru and Suriname to map, for the first time, the control of the broken band phenotype to WntA and identify a~100 kb region controlling this variation. Additionally, we map variation in basal forewing red-orange pigmentation to a locus centred around the gene ventral veins lacking (vvl). The locus also appears to affect medial band shape variation as it was previously known to do in H. erato. This adds to the list of homologous regions controlling convergent phenotypes between these two species. Finally we show that Heliconius wing-patterning genes are strikingly pleiotropic among wing pattern traits. Our results demonstrate how genetic architecture can shape, aid and constrain adaptive evolution.
Mimicry: developmental genes that contribute to speciation
Evolution and Development, 2003
Despite renewed interest in the role of natural selection as a catalyst for the origin of species, the developmental and genetic basis of speciation remains poorly understood. Here we describe the genetics of Müllerian mimicry in Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae), sister species that recently diverged to mimic other Heliconius. This mimetic shift was a key step in their speciation, leading to pre-and postmating isolation. We identify 10 autosomal loci, half of which have major effects. At least eight appear to be homologous with genes known to control pattern differences within each species. Dominance has evolved under the influence of identifiable "modifier" loci rather than being a fixed characteristic of each locus. Epistasis is found at many levels: phenotypic interaction between specific pairs of genes, developmental canalization due to polygenic modifiers so that patterns are less sharply defined in hybrids, and overall fitness through ecological selection against nonmimetic hybrid genotypes. Most of the loci are clustered into two genomic regions or "supergenes," suggesting color pattern evolution is constrained by preexisting linked elements that may have arisen via tandem duplication rather than having been assembled by natural selection. Linkage, modifiers, and epistasis affect the strength of mimicry as a barrier to gene flow between these naturally hybridizing species and may permit introgression in genomic regions unlinked to those under disruptive selection. Müllerian mimics in Heliconius use different genetic architectures to achieve the same mimetic patterns, implying few developmental constraints. Therefore, although developmental and genomic constraints undoubtedly influence the evolutionary process, their effects are probably not strong in comparison with natural selection.
Localization of Mullerian Mimicry Genes on a Dense Linkage Map of Heliconius erato
Genetics, 2006
We report a dense genetic linkage map of Heliconius erato, a neotropical butterfly that has undergone a remarkable adaptive radiation in warningly colored mimetic wing patterns. Our study exploited natural variation segregating in a cross between H. erato etylus and H. himera to localize wing color pattern loci on a dense linkage map containing amplified fragment length polymorphisms (AFLP), microsatellites, and single-copy nuclear loci. We unambiguously identified all 20 autosomal linkage groups and the sex chromosome (Z). The map spanned a total of 1430 Haldane cM and linkage groups varied in size from 26.3 to 97.8 cM. The average distance between markers was 5.1 cM. Within this framework, we localized two major color pattern loci to narrow regions of the genome. The first gene, D, responsible for red/ orange elements, had a most likely placement in a 6.7-cM region flanked by two AFLP markers on the end of a large 87.5-cM linkage group. The second locus, Sd, affects the melanic pattern on the forewing and was found within a 6.3-cM interval between flanking AFLP loci. This study complements recent linkage analysis of H. erato's comimic, H. melpomene, and forms the basis for marker-assisted physical mapping and for studies into the comparative genetic architecture of wing-pattern mimicry in Heliconius.
Molecular …, 2010
The mimetic wing patterns of Heliconius butterflies are an excellent example of both adaptive radiation and convergent evolution. Alleles at the HmYb and HmSb loci control the presence/absence of hindwing bar and hindwing margin phenotypes respectively between divergent races of H. melpomene, and also between sister species. Here we use fine-scale linkage mapping to identify and sequence a BAC tile path across the HmYb/Sb loci. We also generated transcriptome sequence data for two wing pattern forms of H. melpomene that differed in HmYb/Sb alleles using 454 sequencing technology. Custom scripts were used to process the sequence traces and generate transcriptome assemblies. Genomic sequence for the HmYb/Sb candidate region was annotated both using the MAKER pipeline and manually using transcriptome sequence reads. In total 28 genes were identified in the HmYb/Sb candidate region, six of which have alternative splice forms. None of these are orthologues of genes previously identified as being expressed in butterfly wing pattern development, implying previously undescribed molecular mechanisms of pattern determination on Heliconius wings. The use of next generation sequencing has therefore facilitated DNA annotation of a poorly characterized genome, and generated hypotheses regarding the identity of wing pattern at the HmYb/Sb loci.