Chitosan-Starch Forward Osmosis Membrane for Desalination of Brackish Water (original) (raw)

Development of Chitosan/Starch-Based Forward Osmosis Water Filtration Bags for Emergency Water Supply

Membranes, 2020

A forward osmosis (FO) membrane was developed from a mixture of chitosan and Dioscorea hispida starch, cross-linked using glutaraldehyde. The cross-linked chitosan/starch membrane was revealed to have high mechanical properties with an asymmetric structure. The prepared membrane’s performance was investigated as an FO filter assembled in a polypropylene water filter bag and aluminum foil plastic. In order to study the FO process, brackish water was used as a feed solution, drawn using three types of solution (fructose, sucrose, and fructose/sucrose mixture, each with 3 M concentration). The maximum water flux (5.75 L/m2 h) was achieved using 3 M sucrose. The cross-linked membrane restrained the ions in the feed with a rejection factor value close to 100%. The water quality parameters were evaluated for the physical, chemical, and biological criteria, such as pH, salinity, conductivity, total dissolved solids (TDS), heavy metals, and Escherichia coli content. The water quality parame...

Development Chitosan-based forward Osmosis Membranes for Emergency Drinking Water Supply

Aceh International Journal of Science and Technology, 2018

Development of forward osmosis (FO) membranes became one of the alternative methods for drinking water supply in an emergency. In this research, drinking water bags based on FO membrane have been developed using chitosan as the basic material of membrane. The chitosan membrane used for the manufacture of drinking water bags has a thickness of 0.043 mm, 30.3% porosity, tensile strength 28.83 kgf / mm2, swelling degree 43.5% and elongation of 7.16%. Drinking water bags are made with a combination of Polypropylene Plastic (PP) and aluminum foil with FO membrane inside. This drinking water bag can be applied for brackish water purification to be energy drinking water as one of the solutions for the drinking water supply in emergencies. FO process testing is done by using variation of sugar solution as the draw solution, that are glucose, fructose, sucrose and mixture. The concentration of applied draw solution is 1, 2 and 3M within 1 hour treatment. The highest water flux was obtained ...

Synthesis and investigation of desalinating, antibacterial, and mechanical properties of tetraethylorthosilicate crosslinked chitosan/polyethylene glycol (PEG‐300) membranes for reverse osmosis

Journal of Applied Polymer Science, 2019

Solution casting method was used to synthesize chitosan (CS)-based membranes for reverse osmosis (RO) using PEG-300 and tetraethylorthosilicate as a crosslinker. Their salt rejection (%) and permeate flux (mL/h.m 2) was measured by using lab scale RO plant. FTIR spectroscopy reveals interactions between CS and PEG by shifting of OH peak from 3237 cm −1 to lower wavenumber in modified membranes. SEM results showed pores in modified membranes while pure CS membranes had uniform nonporous and dense microstructure. DMA results demonstrated that the addition of PEG lowers the T g value up to 6.5%. Water content of membranes increases up to 82.63% as the amount of PEG increases owing to its hydrophilic nature. The bacterial killing ability showed that the modified membranes possess good antibacterial activity against Escherichia coli in comparison to the control film. The permeation results revealed that salt rejection and flux of the modified membranes increased up 60% and 86.36 mL/h.m 2 , respectively.

Effect of Varying Amount of Polyethylene Glycol (PEG-600) and 3-Aminopropyltriethoxysilane on the Properties of Chitosan based Reverse Osmosis Membranes

International Journal of Molecular Sciences, 2021

Chitosan and polyethylene glycol (PEG-600) membranes were synthesized and crosslinked with 3-aminopropyltriethoxysilane (APTES). The main purpose of this research work is to synthesize RO membranes which can be used to provide desalinated water for drinking, industrial and agricultural purposes. Hydrogen bonding between chitosan and PEG was confirmed by displacement of the hydroxyl absorption peak at 3237 cm−1 in pure chitosan to lower values in crosslinked membranes by using FTIR. Dynamic mechanical analysis revealed that PEG lowers Tg of the modified membranes vs. pure chitosan from 128.5 °C in control to 120 °C in CS-PEG5. SEM results highlighted porous and anisotropic structure of crosslinked membranes. As the amount of PEG was increased, hydrophilicity of membranes was increased and water absorption increased up to a maximum of 67.34%. Permeation data showed that flux and salt rejection value of the modified membranes was increased up to a maximum of 80% and 40.4%, respectively...

Development of polyamide-6/chitosan membranes for desalination

Egyptian Journal of Petroleum, 2014

This article deals with ''developing novel polyamide-6/chitosan membranes for water desalting using wet phase inversion technique'', in which novel polyamide-6/chitosan membranes were prepared using an appropriate polymer concerning the national circumferences, along with the definition of different controlling parameters of the preparing processes and their effects on the characteristics of the produced membranes. Further, evaluation process of the fabricated sheets was undertaken. Preparation process was followed by assessment of the membrane structural characteristics; then the desalting performance of each prepared membrane was evaluated under different operating conditions in order to find the structure-property relationship. The results show that the membrane flux increases with the increase of operating pressure. The salt rejection and permeation flux have been enhanced this indicates that the chitosan (CS) addition to the polyamide-6 (PA-6) membrane increases the membrane hydrophilic property. Hydraulic permeability coefficient is not stable and varies considerably with the operating pressure. ª 2014 Production and hosting by Elsevier B.V. on behalf of Egyptian Petroleum Research Institute.

Novel Maleic Acid, Crosslinked, Nanofibrous Chitosan/Poly (Vinylpyrrolidone) Membranes for Reverse Osmosis Desalination

International Journal of Molecular Sciences

Fresh and clean water is consistently depleting and becoming a serious problem with rapid increases in population, so seawater desalination technology has captured global attention. For an efficient desalination process, this work proposes a novel, nanofibrous, thin-film composite membrane (NF-TFC) based on the deposition of the nanofibrous active layer of a blend of chitosan (CS) and poly (vinylpyrrolidone) (PVP) crosslinked with maleic acid on a 3-triethoxysilylpropylamine functionalized cellulose acetate substrate. FTIR analysis demonstrated the development of chemical and physical interactions and confirmed the incorporation of functional groups present in the NF-TFC. Scanning electron microscopy (SEM) micrographs depict the fibrous structure of the active layers. The reverse osmosis (RO) desalination characteristics of NF-TFC membranes are elevated by increasing the concentration of the crosslinker in a CS/PVP blend. Cellulose acetate (CA)-S4 attained an optimal salt rejection ...

New polypropylene supported chitosan NF-membrane for desalination application

Desalination, 2011

In the present study, a new NF membrane was prepared by coating chitosan on polypropylene fiber support, by the dissolution of chitosan in 2% acetic acid solution. The resulting membrane was characterized by thermo gravimetric analysis, water absorption, contact angle measurement and scanning electron microscopy. Prepared membrane showed two Tg peaks, one at~90°C that was due to chitosan and the other peak at 170°C that was corresponding to the supporting polypropylene membrane. The membrane showed a low swelling ratio at pH 7, 9, and 11 as compared with pH 5. The performance of the membrane was assessed out using dead end cell. Water flux was studied at different pressures. The salt rejection study was done using NaCl solution and the effect of pH on performance of the membrane was also examined. Newly prepared membrane showed improved water flux, and % of rejection is highest in acidic pH and lowest in basic pH. Hydrulic permeability coefficient and the dielectric constant confirms that the prepared membrane is nanofiltration membrane.

Evaluating the performance of chitosan and chitosan-palm membrane for water treatment: preparation, characterization and purification study

Journal of Taibah University for Science

In this research, the membranes were stemmed from the biopolymer containing quaternary amine moieties (Chitosan and Chitosan-palm) for nanofiltration purposes. The developed membranes were fully featured using different characterization techniques (SEM), (TGA), zeta potential, and contact angle measurement. The membrane's features were systematically characterized in hydrophilicity contact angle, surface morphology, and charge on the surface, acidity, and water permeability. The permeability of water for the chitosan membrane with palm was 3.04 ± 0.12 L m −2 h −1 bar −1 twice as the average permeability of the pristine chitosan membrane 1.68 ± 0.04 L m −2 .h −1 .bar −1. The salt rejection was enhanced (from 5% for NaCl to 70% for MgCl 2 in the same condition). These membranes could endure up to 22 bar. Therefore, the developed Chitosan and chitosan-palm membranes are more noteworthy for water treatment than the other commercially available membranes and costly activated carbons.

A novel high-flux, thin-film composite reverse osmosis membrane modified by chitosan for advanced water treatment

RSC Adv., 2015

Membrane-based desalination is a proven and established technology for mitigating increasing water demand. The high-flux membrane will require lower pressure to produce the given quantity of water and therefore will consume less energy. This work demonstrates a novel method to produce a high-flux membrane by surface modification of thin-film composite reverse osmosis (TFC RO) membrane. TFC RO membrane was exposed to a sodium hypochlorite solution of 1250 mg l À1 for 30 minutes and 60 minutes at pH 11.0, followed by 1000 mg l À1 chitosan for 60 minutes at pH 2.5, and the solute rejection/flux were monitored. It was observed that there is up to 2.5 times increment in flux with ca. 3% increase in solute rejection in the case of chitosan-treated membrane. Although the flux increase is more in membrane with longer exposure to sodium hypochlorite, the decline in solute rejection was also significant. The membrane samples were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to understand the chemical structural changes in the membrane, atomic force microscopy to understand the morphological changes on membrane surface, zeta potential for surface charge and contact angle analysis to understand the change in hydrophilicity.

Desalination performance of a forward osmosis membrane from acetylated nata de coco (bacterial cellulose)

6TH INTERNATIONAL CONFERENCE ON ENVIRONMENT (ICENV2018): Empowering Environment and Sustainable Engineering Nexus Through Green Technology, 2019

Forward osmosis (FO) membrane was fabricated from acetylated nata de coco (NDC). Acetylation of NDC was done by subjecting it to dissolution by 2 concentrations (1% and 2%) of methylene chloride for 72-hours prior to solvent evaporation to form the FO membrane. Membranes were characterized in terms of thickness, hydrophilicity, morphology, and tensile strength. A laboratory-scale FO system was used to test the performance of modified NDC FO membrane in desalination by determination of water flux, salt flux, and salt rejection. The FO system employs three kinds of feed solutions (deionized (DI) water, 0.6 M NaCl, and seawater) and 2M sucrose as draw solution. The water permeability coefficient was also determined. The dried unmodified NDC sheet was used as control to check if the modified NDC can function as FO membrane. The DI water fluxes of 1.19 L/m 2-h (LMH) and 0.67 LMH were recorded for 1% and 2% modified-NDC membranes, respectively. These values are lower compared to the 6.24 LMH observed with the dried unmodified NDC sheet. Water fluxes of 0.6 M NaCl solution and seawater are similar for both 1% and 2% modified-NDC membranes that ranges from 0.51 to 0.56 LMH. High salt rejections were observed for all feed solutions ranging from 91% to 97.9%. The tensile strengths of the membranes are 54.30 and 117.88 N/mm 2 for the 1% and 2% modified-NDC membrane, respectively. These suggest that the modified FO-NDC membrane is suitable for FO process.