Retrieval Performance using Different Type of Similarity Coefficient for Virtual Screening (original) (raw)
2015, Research Journal of Applied Sciences, Engineering and Technology
Development of a new drug needs chemical databases as references to find lead compounds. This study aims to determine the best similarity coefficient to be used for virtual screening task using chemical databases. We calculated the structural resemblance between each pair of chemical structures in their own activity class to get the Mean Pairwise Similarity (MPS) value to see the nature of heterogeneity for each natural product and synthetic chemical databases. The process involves the 2D descriptor of type ECFC4 fingerprint to represent each structure and Tanimoto coefficient to calculate the similarity score between each pair of chemical structures in the same activity class. MPS for an activity class was obtained by taking the average of all similarity scores within that class. Next, three types of similarity coefficients have been used to calculate the similarity score between a query structure and each of the database structure. The results indicate that Tanimoto coefficient shows better performance compared to Russell Rao and Forbes in retrieval task using chemical database. This implies that Tanimoto coefficient is recommended to carry out virtual screening in drug development. More work should be carried out to determine the best combination of similarity coefficient and fingerprint type to get optimal retrieval performance.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.