Human Immunodeficiency Virus Type 1 Escape from RNA Interference (original) (raw)

Human Immunodeficiency Virus Type 1 Escape Is Restricted When Conserved Genome Sequences Are Targeted by RNA Interference

Journal of Virology, 2008

RNA interference (RNAi) is a cellular mechanism in which small interfering RNAs (siRNAs) mediate sequence-specific gene silencing by cleaving the targeted mRNA. RNAi can be used as an antiviral approach to silence the human immunodeficiency virus type 1 (HIV-1) through stable expression of short-hairpin RNAs (shRNAs). We previously reported efficient HIV-1 inhibition by an shRNA against the nonessential nef gene but also described viral escape by mutation or deletion of the nef target sequence. The objective of this study was to obtain insight in the viral escape routes when essential and highly conserved sequences are targeted in the Gag, protease, integrase, and Tat-Rev regions of HIV-1. Target sequences were analyzed of more than 500 escape viruses that were selected in T cells expressing individual shRNAs. Viruses acquired single point mutations, occasionally secondary mutations, but-in contrast to what is observed with nef-no deletions were detected. Mutations occurred predominantly at target positions 6, 8, 9, 14, and 15, whereas none were selected at positions 1, 2, 5, 18, and 19. We also analyzed the type of mismatch in the siRNA-target RNA duplex, and G-U base pairs were frequently selected. These results provide insight into the sequence requirements for optimal RNAi inhibition. This knowledge on RNAi escape may guide the design and selection of shRNAs for the development of an effective RNAi therapy for HIV-1 infections.

Human Immunodeficiency Virus Type 1 Escapes from RNA Interference-Mediated Inhibition

Journal of Virology, 2004

Short-term assays have suggested that RNA interference (RNAi) may be a powerful new method for intracellular immunization against human immunodeficiency virus type 1 (HIV-1) infection. However, RNAi has not yet been shown to protect cells against HIV-1 in long-term virus replication assays. We stably introduced vectors expressing small interfering RNAs (siRNAs) directed against the HIV-1 genome into human T cells by retroviral transduction. We report here that an siRNA directed against the viral Nef gene (siRNA-Nef) confers resistance to HIV-1 replication. This block in replication is not absolute, and HIV-1 escape variants that were no longer inhibited by siRNA-Nef appeared after several weeks of culture. These RNAi-resistant viruses contained nucleotide substitutions or deletions in the Nef gene that modified or deleted the siRNA-Nef target sequence. These results demonstrate that efficient inhibition of HIV-1 replication through RNAi is possible in stably transduced cells. Therefore, RNAi could become a realistic gene therapy approach with which to overcome the devastating effect of HIV-1 on the immune system. However, as is known for antiviral drug therapy against HIV-1, antiviral approaches involving RNAi should be used in a combined fashion to prevent the emergence of resistant viruses.

Inhibition of human immunodeficiency virus type 1 by RNA interference using long-hairpin RNA

Gene Therapy, 2006

Inhibition of virus replication by means of RNA interference has been reported for several important human pathogens, including human immunodeficiency virus type 1 (HIV-1). RNA interference against these pathogens has been accomplished by introduction of virus-specific synthetic small interfering RNAs (siRNAs) or DNA constructs encoding short-hairpin RNAs (shRNAs). Their use as therapeutic antiviral against HIV-1 is limited, because of the emergence of viral escape mutants. In order to solve this durability problem, we tested DNA constructs encoding virus-specific long-hairpin RNAs (lhRNAs) for their ability to inhibit HIV-1 production. Expression of lhRNAs in mammalian cells may result in the synthesis of many siRNAs targeting different viral sequences, thus providing more potent inhibition and reducing the chance of viral escape. The lhRNA constructs were compared with in vitro diced double-stranded RNA and a DNA construct encoding an effective nef-specific shRNA for their ability to inhibit HIV-1 production in cells. Our results show that DNA constructs encoding virus-specific lhRNAs are capable of inhibiting HIV-1 production in a sequencespecific manner, without inducing the class I interferon genes.

A novel approach for inhibition of HIV-1 by RNA interference: counteracting viral escape with a second generation of siRNAs

Journal of RNAi and gene silencing : an international journal of RNA and gene targeting research, 2005

RNA interference (RNAi) is an evolutionary conserved gene silencing mechanism in which small interfering RNA (siRNA) mediates the sequence specific degradation of mRNA. The recent discovery that exogenously delivered siRNA can trigger RNAi in mammalian cells raises the possibility to use this technology as a therapeutic tool against pathogenic viruses. Indeed, it has been shown that siRNAs can be used effectively to inhibit virus replication. The focus of this review is on RNA interference strategies against HIV-1 and how this new technology may be developed into a new successful therapy. One of the hallmarks of RNAi, its sequence specificity, also presents a way out for the virus, as single nucleotide substitutions in the target region can abolish the suppression. Strategies to prevent the emergence of resistant viruses have been suggested and involve the targeting of conserved sequences and the simultaneous use of multiple siRNAs, similar to current highly active antiretroviral th...

Inhibition of drug-resistant HIV-1 by RNA interference

Antiviral Research, 2006

RNA interference is a powerful tool used to inhibit human immunodeficiency virus type 1 (HIV-1) replication in vitro. Almost all HIV-1 genes have been targets for small interfering RNA (siRNA) molecules, and HIV-1 replication can be specifically and successfully inhibited by this technique. RNA interference has been proposed as an alternative strategy to inhibit replication of drug-resistant viruses that emerge during suboptimal antiretroviral therapy for HIV-1. To investigate specific inhibition of drug-resistant HIV-1 by RNA interference, we designed siRNA molecules that recognize codons 181-188 of the reverse transcriptase (RT) gene of wild-type HIV-1 and HIV-1 carrying the M184V mutation, which confers high-level resistance to the RT inhibitor lamivudine. Using viral variants with single point mutations at codon 184, we measured the impact of these mutations on virus replication. We have demonstrated that siRNA targeting either wild-type HIV-1 or M184V variants inhibits replication of the corresponding virus, but does not influence replication of virus with a mismatch in the targeted region. Combining two effective siRNAs did not show synergistic inhibitory effect on HIV-1 replication. However, a combination of lamivudine and siRNA-M184V was very effective in inhibiting replication of both wild-type and variant M184V viruses in mixed infection experiments. Taken together, these results demonstrate that RNA interference might be useful in the treatment of drug-resistant HIV-1 infection.

RNA-interference-based gene therapy approaches to HIV type-1 treatment: tackling the hurdles from bench to bedside

Antiviral chemistry & chemotherapy, 2009

RNA interference (RNAi) is a cellular mechanism that can be induced by small interfering RNAs (siRNAs) to mediate sequence-specific gene silencing by cleavage of the targeted messenger RNA. RNAi can be used as an antiviral approach to silence HIV type-1 (HIV-1) through stable expression of precursors, such as short hairpin RNAs (shRNAs), which are processed into siRNAs that can elicit degradation of HIV-1 RNAs. At the beginning of 2008, the first clinical trial using a lentivirus with an RNA-based gene therapy against HIV-1 was initiated. The antiviral molecules in this gene therapy consist of three RNA effectors, one of which triggers the RNAi pathway. This review article focuses on the basic principles of an RNAi-based gene therapy against HIV-1, including delivery methods, target selection, viral escape possibilities, systems for multiplexing siRNAs to achieve a durable therapy and the in vitro and in vivo test systems to evaluate the efficacy and safety of such a therapy.

Toward a Durable Anti-HIV Gene Therapy Based on RNA Interference

Annals of the New York Academy of Sciences, 2009

Basic research in the field of molecular biology led to the discovery of the mechanism of RNA interference (RNAi) in Caenorhabditis elegans in 1998. RNAi is now widely appreciated as an important gene control mechanism in mammals, and several RNAi-based gene-silencing applications have already been used in clinical trials. In this review I will discuss RNAi approaches to inhibit the pathogenic human immunodeficiency virus type 1 (HIV-1), which establishes a chronic infection that would most likely require a durable gene therapy approach. Viruses, such as HIV-1, are particularly difficult targets for RNAi attack because they mutate frequently, which allows viral escape by mutation of the RNAi target sequence. Combinatorial RNAi strategies are required to prevent viral escape.

Trans-inhibition of HIV-1 by a long hairpin RNA expressed within the viral genome

Retrovirology, 2007

Human immunodeficiency virus type 1 (HIV-1) can be inhibited by means of RNA silencing or interference (RNAi) using synthetic short interfering RNAs (siRNAs) or gene constructs encoding short hairpin RNAs (shRNAs) or long hairpin RNAs (lhRNAs). The use of siRNA and shRNA as antiviral therapeutic is limited because of the emergence of viral escape mutants. This problem is theoretically prevented by intracellular expression of lhRNAs generating multiple siRNAs that target the virus simultaneously, thus reducing the chance of viral escape. However, gene constructs encoding lhRNA molecules face problems with delivery to the right cells in an infected individual. In order to solve this problem, we constructed an HIV-1 variant with a 300 bp long hairpin structure in the 3' part of the genome corresponding to the Nef gene (HIV-lhNef). Intriguingly, HIV-lhNef potently inhibited wild-type HIV-1 production in trans. However, HIV-lhNef demonstrated a severe production and replication defec...

Sequence Homology Required by Human Immunodeficiency Virus Type 1 To Escape from Short Interfering RNAs

Journal of Virology, 2006

Short interfering RNAs (siRNAs) targeting viral or cellular genes can efficiently inhibit human immunodeficiency virus type 1 (HIV-1) replication. Nevertheless, the emergence of mutations in the gene being targeted could lead to the rapid escape from the siRNA. Here, we simulate viral escape by systematically introducing single-nucleotide substitutions in all 19 HIV-1 residues targeted by an effective siRNA. We found that all mutant viruses that were tested replicated better in the presence of the siRNA than in the presence of the wild-type virus. The antiviral activity of the siRNA was completely abolished by single substitutions in 10 (positions 4 to 11, 14, and 15) out of 16 positions tested (substitution at 3 of the 19 positions explored rendered nonviable viruses). With the exception of the substitution observed at position 12, substitutions at either the 5 end or the 3 end (positions 1 to 3, 16, and 18) were better tolerated by the RNA interference machinery and only in part affected siRNA inhibition. Our results show that optimal HIV-1 gene silencing by siRNA requires a complete homology within most of the target sequence and that substitutions at only a few positions at the 5 and 3 ends are partially tolerated.