Multivariate quantile-quantile plots and related tests using spatial quantiles (original) (raw)

Comparison of multivariate distributions using quantile–quantile plots and related tests

Probal Chaudhuri

Bernoulli, 2014

View PDFchevron_right

Comparison of Multivariate Distributions Using Quantile-Quantile Plots and Related Tests1

Probal Chaudhuri

isical.ac.in

View PDFchevron_right

Quantile Analysis: A Method for Characterizing Data Distributions

Robert Lodder

Applied Spectroscopy, 1988

View PDFchevron_right

A Tutorial on Quantile-Quantile Plots

Edel Garcia

2018

View PDFchevron_right

Visualizing multiple quantile plots

Marko Boon

Journal of Computational and Graphical Statistics, 2012

View PDFchevron_right

Conditional Spatial Quantile: Characterization and Nonparametric Estimation

Jérôme Saracco

Cahiers du GREThA, 2008

View PDFchevron_right

Functional, randomized and smoothed multivariate quantile regions

Ludger Rüschendorf

Journal of Multivariate Analysis, 2021

View PDFchevron_right

Multivariate ρ-Quantiles : a Spatial Approach ∗

Dimitri Konen

2021

View PDFchevron_right

A multivariate control quantile test using data depth

Reza Modarres

Computational Statistics & Data Analysis, 2013

View PDFchevron_right

Empirical likelihood estimation of the spatial quantile regression

Philip Kostov

Journal of Geographical Systems, 2013

View PDFchevron_right

Quantiles for finite and infinite dimensional data

Ricardo Fraiman

Journal of Multivariate Analysis, 2012

View PDFchevron_right

Beyond Q–Q plots: Some new graphical tools for the assessment of distributional assumptions and the tail behavior of the data

Ravindra Khattree

Journal of Statistical Theory and Practice, 2017

View PDFchevron_right

Quantile regression for spatially correlated data: an empirical likelihood approach

Xuming He

Statistica Sinica, 2014

View PDFchevron_right

Quantile curves and dependence structure for bivariate distributions

Castano Murcia

Computational Statistics & Data Analysis, 2007

View PDFchevron_right

Graphical Tools to Assess Goodness-of-Fit in Non-Location-Scale Distributions

Emilia Athayde, Victor Leiva

Revista Colombiana de Estadística, 2014

View PDFchevron_right

Visualization of univariate data for comparison

Csaba Faragó

2015

View PDFchevron_right

Multiscale Exploratory Analysis of Regression Quantiles Using Quantile SiZer

Jan Hannig

Journal of Computational and Graphical Statistics, 2010

View PDFchevron_right

A modified Q-Q plot for large sample sizes

Comunicaciones en Estadística

Comunicaciones en Estadística, 2015

View PDFchevron_right

A modified Q-Q plot for large sample sizes 1 Gráfico Q-Q modificado para grandes tamaños de muestra

Juan Carlos Correa Morales, Ediciones USTA

View PDFchevron_right

Assessment of an L-Kurtosis-Based Criterionfor Quantile Estimation

Pieter van Gelder

Journal of Hydrologic Engineering, 2001

View PDFchevron_right

Computation of optimal plotting points based on Pitman closeness with an application to goodness-of-fit for location-scale families

Narayanaswamy Balakrishnan

Computational Statistics & Data Analysis, 2012

View PDFchevron_right

Central regions for bivariate distributions

Alfonso Suárez Llorens

View PDFchevron_right

Local linear spatial quantile regression

Keming Yu

Bernoulli, 2009

View PDFchevron_right

A method for statistically comparing spatial distribution maps

Mary Reynolds

International Journal of Health Geographics, 2009

View PDFchevron_right

Multivariate quantiles and multiple-output regression quantiles: From L1 optimization to halfspace depth

Yijun Zuo

The Annals of Statistics, 2010

View PDFchevron_right

Tests for high dimensional data based on means, spatial signs and spatial ranks

Probal Chaudhuri

View PDFchevron_right

On some high‐dimensional two‐sample tests based on averages of inter‐point distances

Anil Ghosh

Stat, 2018

View PDFchevron_right

Robust quantile estimation and prediction for spatial processes

Baba Thiam

Statistics & Probability Letters, 2010

View PDFchevron_right

Q-Q plots with confidence for testing Weibull and exponential distributions

Wanpen Chantarangsi

Hacettepe University Bulletin of Natural Sciences and Engineering Series B: Mathematics and Statistics

View PDFchevron_right