Fibronectin within Sodium Alginate Microcapsules Improved Osteogenic Differentiation of BMMSCs in Dose Dependent Manner by Targeting SP7, OCN, CDK1, ZBTB16, and Twist1 Expression (original) (raw)
Related papers
The success of synthetic bone implants requires good interface between the material and the host tissue. To study the biological relevance of fibronectin (FN) density on the osteogenic commitment of human bone marrow mesenchymal stem cells (hBMMSCs), human FN was adsorbed in a linear density gradient on the surface of PCL. The evolution of the osteogenic markers alkaline phosphatase and collagen 1 alpha 1 was monitored by immunohistochemistry, and the cytoskeletal organization and the cell-derived FN were assessed. The functional analysis of the gradient revealed that the lower FN-density elicited stronger osteogenic expression and higher cytoskeleton spreading, hallmarks of the stem cell commitment to the osteoblastic lineage. The identification of the optimal FN density regime for the osteogenic commitment of hBM-MSCs presents a simple and versatile strategy to significantly enhance the surface properties of polycaprolactone as a paradigm for other synthetic polymers intended for bone-related applications.
Annals of Biomedical Engineering, 2005
In this study, the osteoinductive and cell-binding properties of three different resorbable polymers were evaluated by human mesenchymal stem cells (MSCs). MSCs were isolated, expanded, and cultivated onto resorbable D,D,L,L-polylactide (PLLA), collagen I/III, and polygalactin-910/polydioxanone (PGPD) scaffolds in vitro. To evaluate the influence of dexamethasone, ascorbic acid, and beta-glycerolphosphate (DAG) on osteoblast differentiation, MSCs were incubated in a DAG-enriched medium. After a 28-day period in vitro, the cellular loaded polymers were digested enzymatically by papain and HCl. The Ca(2+) content of the biomembranes was evaluated by an o-kresolphthalein-complexon reaction via photometer. A PicoGreen assay was performed for dsDNA quantification. Significant differences between the number of adherent MSCs were documented (collagen > PLLA > PGPD). Compared to the initial number of adherent cells, all biomaterials induced a significant decrease in cellular adherence after 28 days in vitro. The presence of DAG-enriched culture medium stimulated the cellular proliferation for PLLA and slightly for PGPD, whereas cell proliferation was inhibited when MSCs were cultivated onto collagen I/III. In comparison with the control groups, all biomaterials (PLLA, PGPD, and collagen I/III) showed a significant increase in local Ca(2+) accumulation under DAG stimulation after 28 days in vitro. Furthermore, collagen I/III and PLLA scaffolds showed osteoinductive properties without DAG stimulation. These results were verified by immunocytochemical stainings against osteoblast-typical markers (osteopontin and alkaline phosphatase) and completed by calcified matrix detection (von Kossa staining). MSCs were identified by CD105 and CD13 antigen expression. Corresponding to an absence of CD34, CD45, and collagen II expression, we found no chondrogenic or hematopoietic cell differentiation. The results indicate significant differences for the proliferation, differentiation, adherence, and Ca(2+) accumulation between the tested polymers in a MSC culture.
Nascent osteoblast matrix inhibits osteogenesis of human mesenchymal stem cells in vitro
Stem cell research & therapy, 2015
Adult mesenchymal stem cells (MSCs) are considered promising candidates for cell-based therapies. Their potential utility derives primarily from their immunomodulatory activity, multi-lineage differentiation potential, and likely progenitor cell function in wound healing and repair of connective tissues. However, in vitro, MSCs often senesce and spontaneously differentiate into osteoblasts after prolonged expansion, likely because of lack of regulatory microenvironmental signals. In vivo, osteoblasts that line the endosteal bone marrow surface are in close proximity to MSCs in the marrow stroma and thus may help to regulate MSC fate. We examined here how osteogenic differentiation of MSCs in vitro is affected by exposure to osteoblastic cells (OBCs). Human bone marrow MSCs were exposed to OBCs, derived by induced osteogenic differentiation of MSCs, either directly in contact co-cultures, or indirectly to OBC-conditioned medium or decellularized OBC extracellular matrix (ECM). Our re...