A Novel Approach to Evaluate Community Detection Algorithms on Ground Truth (original) (raw)

Community detection algorithm evaluation with ground-truth data

Physica A: Statistical Mechanics and its Applications, 2018

Community structure is of paramount importance for the understanding of complex networks. Consequently, there is a tremendous effort in order to develop efficient community detection algorithms. Unfortunately, the issue of a fair assessment of these algorithms is a thriving open question. If the ground-truth community structure is available, various clustering-based metrics are used in order to compare it versus the one discovered by these algorithms. However, these metrics defined at the node level are fairly insensitive to the variation of the overall community structure. To overcome these limitations, we propose to exploit the topological features of the 'community graphs' (where the nodes are the communities and the links represent their interactions) in order to evaluate the algorithms. To illustrate our methodology, we conduct a comprehensive analysis of overlapping community detection algorithms using a set of real-world networks with known a priori community structure. Results provide a better perception of their relative performance as compared to classical metrics. Moreover, they show that more emphasis should be put on the topology of the community structure. We also investigate the relationship between the topological properties of the community structure and the alternative evaluation measures (quality metrics and clustering metrics). It appears clearly that they present different views of the community structure and that they must be combined in order to evaluate the effectiveness of community detection algorithms.

Overcoming Bias in Community Detection Evaluation

Journal of Information and Data Management, 2021

Community detection is a key task to further understand the function and the structure of complex networks. Therefore, a strategy used to assess this task must be able to avoid biased and incorrect results that might invalidate further analyses or applications that rely on such communities. Two widely used strategies to assess this task are generally known as structural and functional. The structural strategy basically consists in detecting and assessing such communities by using multiple methods and structural metrics. On the other hand, the functional strategy might be used when ground truth data are available to assess the detected communities. However, the evaluation of communities based on such strategies is usually done in experimental configurations that are largely susceptible to biases, a situation that is inherent to algorithms, metrics and network data used in this task. Furthermore, such strategies are not systematically combined in a way that allows for the identification and mitigation of bias in the algorithms, metrics or network data to converge into more consistent results. In this context, the main contribution of this article is an approach that supports a robust quality evaluation when detecting communities in real-world networks. In our approach, we measure the quality of a community by applying the structural and functional strategies, and the combination of both, to obtain different pieces of evidence. Then, we consider the divergences and the consensus among the pieces of evidence to identify and overcome possible sources of bias in community detection algorithms, evaluation metrics, and network data. Experiments conducted with several real and synthetic networks provided results that show the effectiveness of our approach to obtain more consistent conclusions about the quality of the detected communities.

Qualitative Comparison of Community Detection Algorithms

2011

Community detection is a very active field in complex networks analysis, consisting in identifying groups of nodes more densely interconnected relatively to the rest of the network. The existing algorithms are usually tested and compared on real-world and artificial networks, their performance being assessed through some partition similarity measure. However, artificial networks realism can be questioned, and the appropriateness of those measures is not obvious. In this study, we take advantage of recent advances concerning the characterization of community structures to tackle these questions. We first generate networks thanks to the most realistic model available to date. Their analysis reveals they display only some of the properties observed in real-world community structures. We then apply five community detection algorithms on these networks and find out the performance assessed quantitatively does not necessarily agree with a qualitative analysis of the identified communities. It therefore seems both approaches should be applied to perform a relevant comparison of the algorithms.

Community detection algorithms: A comparative analysis

Physical Review E, 2009

Uncovering the community structure exhibited by real networks is a crucial step towards an understanding of complex systems that goes beyond the local organization of their constituents. Many algorithms have been proposed so far, but none of them has been subjected to strict tests to evaluate their performance. Most of the sporadic tests performed so far involved small networks with known community structure and/or artificial graphs with a simplified structure, which is very uncommon in real systems. Here we test several methods against a recently introduced class of benchmark graphs, with heterogeneous distributions of degree and community size. The methods are also tested against the benchmark by Girvan and Newman and on random graphs. As a result of our analysis, three recent algorithms introduced by Rosvall and Bergstrom, Blondel et al. and Ronhovde and Nussinov, respectively, have an excellent performance, with the additional advantage of low computational complexity, which enables one to analyze large systems.

Community detection in social networks

Proceedings of the VLDB Endowment, 2015

Revealing the latent community structure, which is crucial to understanding the features of networks, is an important problem in network and graph analysis. During the last decade, many approaches have been proposed to solve this challenging problem in diverse ways, i.e. different measures or data structures. Unfortunately, experimental reports on existing techniques fell short in validity and integrity since many comparisons were not based on a unified code base or merely discussed in theory. We engage in an in-depth benchmarking study of community detection in social networks. We formulate a generalized community detection procedure and propose a procedure-oriented framework for benchmarking. This framework enables us to evaluate and compare various approaches to community detection systematically and thoroughly under identical experimental conditions. Upon that we can analyze and diagnose the inherent defect of existing approaches deeply, and further make effective improvements c...

A Comparison of Community Detection Algorithms on Artificial Networks

2009

Community detection has become a very important part in complex networks analysis. Authors traditionally test their algorithms on a few real or artificial networks. Testing on real networks is necessary, but also limited: the considered real networks are usually small, the actual underlying communities are generally not defined objectively, and it is not possible to control their properties. Generating artificial networks makes it possible to overcome these limitations. Until recently though, most works used variations of the classic Erdős-Rényi random model and consequently suffered from the same flaws, generating networks not realistic enough. In this work, we use Lancichinetti et al. model, which is able to generate networks with controlled power-law degree and community distributions, to test some community detection algorithms. We analyze the properties of the generated networks and use the normalized mutual information measure to assess the quality of the results and compare the considered algorithms.

Empirical comparison of algorithms for network community detection

2010

Abstract Detecting clusters or communities in large real-world graphs such as large social or information networks is a problem of considerable interest. In practice, one typically chooses an objective function that captures the intuition of a network cluster as set of nodes with better internal connectivity than external connectivity, and then one applies approximation algorithms or heuristics to extract sets of nodes that are related to the objective function and that" look like" good communities for the application of interest.

Evaluation Metrics for Overlapping Community Detection

2022 IEEE 47th Conference on Local Computer Networks (LCN)

Networks have provided a representation for a wide range of real systems, including communication flow, money transfer or biological systems, to mention just a few. Communities represent fundamental structures for understanding the organization of real-world networks. Uncovering coherent groups in these networks is the goal of community detection. A community is a mesoscopic structure with nodes heavily connected within their groups by comparison to the nodes in other groups. Communities might also overlap as they may share one or multiple nodes. Evaluating the results of a community detection algorithm is an equally important task. This paper introduces metrics for evaluating overlapping community detection. The idea of introducing new metrics comes from the lack of efficiency and adequacy of state-of-the-art metrics for overlapping communities. The new metrics are tested both on simulated data and standard datasets and are compared with existing metrics.

An optimisation tool for robust community detection algorithms using content and topology information

The Journal of Supercomputing

With the recent prevalence of information networks, the topic of community detection has gained much interest among researchers. In real-world networks, node attribute (content information) is also available in addition to topology information. However, the collected topology information for networks is usually noisy when there are missing edges. Furthermore, the existing community detection methods generally focus on topology information and largely ignore the content information. This makes the task of community detection for incomplete networks very challenging. A new method is proposed that seeks to address this issue and help improve the performance of the existing community detection algorithms by considering both sources of information, i.e. topology and content. Empirical results demonstrate that our proposed method is robust and can detect more meaningful community structures within networks having incomplete information, than the conventional methods that consider only top...

Benchmark graphs for testing community detection algorithms

Physical Review E, 2008

Community structure is one of the most important features of real networks and reveals the internal organization of the nodes. Many algorithms have been proposed but the crucial issue of testing, i.e. the question of how good an algorithm is, with respect to others, is still open. Standard tests include the analysis of simple artificial graphs with a built-in community structure, that the algorithm has to recover. However, the special graphs adopted in actual tests have a structure that does not reflect the real properties of nodes and communities found in real networks. Here we introduce a new class of benchmark graphs, that account for the heterogeneity in the distributions of node degrees and of community sizes. We use this new benchmark to test two popular methods of community detection, modularity optimization and Potts model clustering. The results show that the new benchmark poses a much more severe test to algorithms than standard benchmarks, revealing limits that may not be apparent at a first analysis.