Integrated Printed Microfluidic Biosensors (original) (raw)

Fabrication of microfluidic integrated biosensor

An event of miniaturizing for sensor systems to carry out biological diagnostics are gaining wade spread acceptance. The system may contain several different sensor units for the detection of specific analyte, the analyte to be detected might be any kind of biological molecules (DNA, mRNA or proteins) or chemical substances. In most cases, the detection is based on receptor-ligand binding like DNA hybridization or antibody-antigen interaction, achieving this on a nanostructure. DNA or protein must be attached to certain locations within the structure. Critical for this is to have a robust binding chemistry to the surface in the microstructure. Here we successfully designed and fabricated microfluidics element for passive fluid delivery into polysilicon Nanowire sensing domain, we further demonstrated a very simple and effective way of integrating the two devices to give full functionalities of laboratory on a single chip. The sensing element was successfully surface modified and tested on real biomedical clinical sample for evaluation and validation.

Microfluidic‐integrated biosensors: Prospects for point‐of‐care diagnostics

There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro-to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry.

Precise Integration of Polymeric Sensing Functional Materials within 3D Printed Microfluidic Devices

Chemosensors

This work presents a new architecture concept for microfluidic devices, which combines the conventional 3D printing fabrication process with the stable and precise integration of polymeric functional materials in small footprints within the microchannels in well-defined locations. The approach solves the assembly errors that normally occur during the integration of functional and/or sensing materials in hybrid microfluidic devices. The method was demonstrated by embedding four pH-sensitive ionogel microstructures along the main microfluidic channel of a complex 3D printed microfluidic device. The results showed that this microfluidic architecture, comprising the internal integration of sensing microstructures of diverse chemical compositions, highly enhanced the adhesion force between the microstructures and the 3D printed microfluidic device that contains them. In addition, the performance of this novel 3D printed pH sensor device was investigated using image analysis of the pH col...

Review Recent Advances in Bioprinting and Applications for Biosensing

2014

Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic.

Recent Advances in Bioprinting and Applications for Biosensing

biosensors, 2014

Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic.

Microfluidics for medical diagnostics and biosensors

Chemical Engineering Science, 2011

This article reviews the recent development in microfluidics for medical diagnostics and integrations with biosensors. Diagnostic and sensing applications have been the focus of much of the development of the micro-Total-Analysis-Systems (MicroTAS), and have recently enjoyed further development in new fabrication technologies, integrations, and utilities in field-and medical-applications. The challenges for these applications have been to reduce cost, to meet the sensitivity requirements while providing throughput and speed, and to expand the repertoire of applications. This review focuses mostly on new developments in the last 5-10 years in materials development, chip architecture and integration, different sensing modes that can be used in conjunction with microfluidics, and new applications that have emerged or have been demonstrated; it also aims to point out where future research can be directed to in these areas.

Nanotechnology and microfluidics based biosensing

Microfluidics based biosensing is increasingly seen as a major enabler for medical diagnostics, especially Point of Care applications. Although often seen as one application, Point of Care is divided into three area, each with its own specific demands and constraints. As with all new products, the diversity in technologies is bewildering. However the demands and constraints forces the industry in certain directions, of which the need for very sensitive sensor concepts not needing complicated pre-processing steps is the most dominant one. Another important trend is integration of functionalities in the biosensor enabler device. That integration is needed to create faster and cheaper devices. The last trend is towards plug and play microfluidics. As a big barrier to the integration and plug and play devices are universal microfluidic interconnections, there is a need for microfluidic standards. A roadmap for such microfluidic standards is discussed.

Arrays of nanoelectromechanical biosensors functionalized by microcontact printing

Nanotechnology, 2012

The biofunctionalization of nanoelectromechanical structures is critical for the development of new classes of biosensors displaying improved performances and higher-level of integration. We propose a modified microcontact printing method for the functionalization and passivation of large arrays of nanocantilevers in a single, self-aligned step. Using fluorescence microscopy and resonant frequency measurements, we demonstrate (1) the bioactivity and the anti-fouling property of deposited antibodies and BSA molecules and (2) the preservation of the nanostructures' mechanical integrity.