DNA Methylation Profiling of Uniparental Disomy Subjects Provides a Map of Parental Epigenetic Bias in the Human Genome (original) (raw)
Related papers
Genome Research, 2010
The maternal and paternal genomes possess distinct epigenetic marks that distinguish them at imprinted loci. In order to identify imprinted loci, we used a novel method, taking advantage of the fact that uniparental disomy (UPD) provides a system that allows the two parental chromosomes to be studied independently. We profiled the paternal and maternal methylation on chromosome 15 using immunoprecipitation of methylated DNA and hybridization to tiling oligonucleotide arrays. Comparison of six individuals with maternal versus paternal UPD15 revealed 12 differentially methylated regions (DMRs). Putative DMRs were validated by bisulfite sequencing, confirming the presence of parent-of-originspecific methylation marks. We detected DMRs associated with known imprinted genes within the Prader-Willi/Angelman syndrome region, such as SNRPN and MAGEL2, validating this as a method of detecting imprinted loci. Of the 12 DMRs identified, eight were novel, some of which are associated with genes not previously thought to be imprinted. These include a site within intron 2 of IGF1R at 15q26.3, a gene that plays a fundamental role in growth, and an intergenic site upstream of GABRG3 that lies within a previously defined candidate region conferring an increased maternal risk of psychosis. These data provide a map of parent-of-origin-specific epigenetic modifications on chromosome 15, identifying DNA elements that may play a functional role in the imprinting process. Application of this methodology to other chromosomes for which UPD has been reported will allow the systematic identification of imprinted sites throughout the genome.
Genome Research, 2014
Differential methylation between the two alleles of a gene has been observed in imprinted regions, where the methylation of one allele occurs on a parent-of-origin basis, the inactive X-chromosome in females, and at those loci whose methylation is driven by genetic variants. We have extensively characterized imprinted methylation in a substantial range of normal human tissues, reciprocal genome-wide uniparental disomies, and hydatidiform moles, using a combination of wholegenome bisulfite sequencing and high-density methylation microarrays. This approach allowed us to define methylation profiles at known imprinted domains at base-pair resolution, as well as to identify 21 novel loci harboring parent-of-origin methylation, 15 of which are restricted to the placenta. We observe that the extent of imprinted differentially methylated regions (DMRs) is extremely similar between tissues, with the exception of the placenta. This extra-embryonic tissue often adopts a different methylation profile compared to somatic tissues. Further, we profiled all imprinted DMRs in sperm and embryonic stem cells derived from parthenogenetically activated oocytes, individual blastomeres, and blastocysts, in order to identify primary DMRs and reveal the extent of reprogramming during preimplantation development. Intriguingly, we find that in contrast to ubiquitous imprints, the majority of placenta-specific imprinted DMRs are unmethylated in sperm and all human embryonic stem cells. Therefore, placental-specific imprinting provides evidence for an inheritable epigenetic state that is independent of DNA methylation and the existence of a novel imprinting mechanism at these loci.
Twin Research and Human Genetics, 2013
Imprinting control regions (ICRs) play a fundamental role in establishing and maintaining the non-random monoallelic expression of certain genes, via common regulatory elements such as non-coding RNAs and differentially methylated regions (DMRs) of DNA. We recently surveyed DNA methylation levels within four ICRs (H19-ICR, IGF2-DMR, KvDMR, and NESPAS-ICR) in whole-blood genomic DNA from 128 monozygotic (MZ) and 128 dizygotic (DZ) human twin pairs. Our analyses revealed high individual variation and intra-domain covariation in methylation levels across CpGs and emphasized the interaction between epigenetic variation and the underlying genetic sequence in a parent-of-origin fashion. Here, we extend our analysis to conduct two genome-wide screenings of single nucleotide polymorphisms (SNPs) underlying either intra-domain covariation or parent-of-origin-dependent association with methylation status at individual CpG sites located within ICRs. Although genome-wide significance was not su...
Insights into imprinting from parent-of-origin phased methylomes and transcriptomes
Nature Genetics, 2018
Imprinting is the preferential expression of one parental allele over the other. It is controlled primarily through differential methylation of cytosine at CpG dinucleotides. Here we combine 285 methylomes and 11,617 transcriptomes from peripheral blood samples with parent-of-origin phased haplotypes, to produce a new map of imprinted methylation and gene expression patterns across the human genome. We demonstrate how imprinted methylation is a continuous rather than a binary characteristic. We describe at high resolution the parent-of-origin methylation pattern at the 15q11.2 Prader-Willi/Angelman syndrome locus, with nearly confluent stochastic paternal methylation punctuated by 'spikes' of maternal methylation. We find examples of polymorphic imprinted methylation unrelated (at VTRNA2-1 and PARD6G) or related (at CHRNE) to nearby SNP genotypes. We observe RNA isoform-specific imprinted expression patterns suggestive of a methylation-sensitive transcriptional elongation block. Finally, we gain new insights into parent-of-origin-specific effects on phenotypes at the DLK1/MEG3 and GNAS loci.
PLoS ONE, 2011
One of the best studied read-outs of epigenetic change is the differential expression of imprinted genes, controlled by differential methylation of imprinted control regions (ICRs). To address the impact of genotype on the epigenome, we performed a detailed study in 128 pairs of monozygotic (MZ) and 128 pairs of dizygotic (DZ) twins, interrogating the DNA methylation status of the ICRs of IGF2, H19, KCNQ1, GNAS and the non-imprinted gene RUNX1. While we found a similar overall pattern of methylation between MZ and DZ twins, we also observed a high degree of variability in individual CpG methylation levels, notably at the H19/IGF2 loci. A degree of methylation plasticity independent of the genome sequence was observed, with both local and regional CpG methylation changes, discordant between MZ and DZ individual pairs. However, concordant gains or losses of methylation, within individual twin pairs were more common in MZ than DZ twin pairs, indicating that de novo and/or maintenance methylation is influenced by the underlying DNA sequence. Specifically, for the first time we showed that the rs10732516 [A] polymorphism, located in a critical CTCF binding site in the H19 ICR locus, is strongly associated with increased hypermethylation of specific CpG sites in the maternal H19 allele. Together, our results highlight the impact of the genome on the epigenome and demonstrate that while DNA methylation states are tightly maintained between genetically identical and related individuals, there remains considerable epigenetic variation that may contribute to disease susceptibility.
Human Mutation, 2013
Genomic imprinting is the parent-of-originspecific allelic transcriptional silencing observed in mammals, which is governed by DNA methylation established in the gametes and maintained throughout the development. The frequency and extent of epimutations associated with the nine reported imprinting syndromes varies because it is evident that aberrant preimplantation maintenance of imprinted differentially methylated regions (DMRs) may affect multiple loci. Using a custom Illumina GoldenGate array targeting 27 imprinted DMRs, we profiled allelic methylation in 65 imprinting defect patients. We identify multilocus hypomethylation in numerous Beckwith-Wiedemann syndrome, transient neonatal diabetes mellitus (TNDM), and pseudohypoparathyroidism 1B patients, and an individual with Silver-Russell syndrome. Our data reveal a broad range of epimutations exist in certain imprinting syndromes, with the exception of Prader-Willi syndrome and Angelman syndrome patients that are associated with solitary SNRPN-DMR defects. A mutation analysis identified a 1 bp deletion in the ZFP57 gene in a TNDM patient with methylation defects at multiple maternal DMRs. In addition, we observe missense variants in ZFP57, NLRP2, and NLRP7 that are not consistent with maternal effect and aberrant establishment or methylation maintenance, and are likely benign. This work illustrates that further extensive molecular characterization of these rare patients is required to fully understand the mechanism underlying the etiology of imprint establishment and maintenance.
American Journal of Medical Genetics Part A, 2013
Imprinting disorders are associated with mutations and epimutations affecting imprinted genes, that is those whose expression is restricted by parent of origin. Their diagnosis is challenging for two reasons: firstly, their clinical features, particularly prenatal and postnatal growth disturbance, are heterogeneous and partially overlapping; secondly, their underlying molecular defects include mutation, epimutation, copy number variation, and chromosomal errors, and can be further complicated by somatic mosaicism and multi-locus methylation defects. It is currently unclear to what extent the observed phenotypic heterogeneity reflects the underlying molecular pathophysiology; in particular, the molecular and clinical diversity of multilocus methylation defects remains uncertain. To address these issues we performed comprehensive methylation analysis of imprinted genes in a research cohort of 285 patients with clinical features of imprinting disorders, with or without a positive molecular diagnosis. 20 of 91 patients (22%) with diagnosed epimutations had methylation defects of additional imprinted loci, and the frequency of developmental delay and congenital anomalies was higher among these patients than those with isolated epimutations, indicating that hypomethylation of multiple imprinted loci is associated with increased diversity of clinical presentation. Among 194 patients with clinical features of an imprinting disorder but no molecular diagnosis, we found 15 (8%) with methylation anomalies, including missed and unexpected molecular diagnoses. These observations broaden the phenotypic and epigenetic definitions of imprinting disorders, and show the importance of comprehensive molecular testing for patient diagnosis and management.
Analysis of DNA methylation acquisition at the imprinted Dlk1 locus reveals asymmetry at CpG dyads
Epigenetics & Chromatin, 2014
Background: Differential distribution of DNA methylation on the parental alleles of imprinted genes distinguishes the alleles from each other and dictates their parent of origin-specific expression patterns. While differential DNA methylation at primary imprinting control regions is inherited via the gametes, additional allele-specific DNA methylation is acquired at secondary sites during embryonic development and plays a role in the maintenance of genomic imprinting. The precise mechanisms by which this somatic DNA methylation is established at secondary sites are not well defined and may vary as methylation acquisition at these sites occurs at different times for genes in different imprinting clusters.
Methylation screening of reciprocal genome-wide UPDs identifies novel human-specific imprinted genes
Human Molecular Genetics, 2011
Nuclear transfer experiments undertaken in the mid-80's revealed that both maternal and paternal genomes are necessary for normal development. This is due to genomic imprinting, an epigenetic mechanism that results in parent-of-origin monoallelic expression of genes regulated by germline-derived allelic methylation. To date, ∼100 imprinted transcripts have been identified in mouse, with approximately two-thirds showing conservation in humans. It is currently unknown how many imprinted genes are present in humans, and to what extent these transcripts exhibit human-specific imprinted expression. This is mainly due to the fact that the majority of screens for imprinted genes have been undertaken in mouse, with subsequent analysis of the human orthologues. Utilizing extremely rare reciprocal genome-wide uniparental disomy samples presenting with Beckwith-Wiedemann and Silver-Russell syndrome-like phenotypes, we analyzed ∼0.1% of CpG dinculeotides present in the human genome for imprinted differentially methylated regions (DMRs) using the Illumina Infinium methylation27 BeadChip microarray. This approach identified 15 imprinted DMRs associated with characterized imprinted domains, and confirmed the maternal methylation of the RB1 DMR. In addition, we discovered two novel DMRs, first, one maternally methylated region overlapping the FAM50B promoter CpG island, which results in paternal expression of this retrotransposon. Secondly, we found a paternally methylated, bidirectional repressor located between maternally expressed ZNF597 and NAT15 genes. These three genes are biallelically expressed in mice due to lack of differential methylation, suggesting that these genes have become imprinted after the divergence of mouse and humans. † Methylation array data: the data from the Illumna Infinium Human Methylation27 BeadChip microarray has been deposited with GEO database, accession number GSE28525.