Sign Changing Solutions for Quasilinear Superlinear Elliptic Problems (original) (raw)

Abstract

Results on existence and multiplicity of solutions for a nonlinear elliptic problem driven by the Φ-Laplace operator are established. We employ minimization arguments on suitable Nehari manifolds to build a negative and a positive ground state solutions. In order to find a nodal solution we employ additionally the well known Deformation Lemma and Topological Degree Theory.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (33)

  1. Adams, R. A. & Fournier, J. F., Sobolev Spaces, Academic Press, New York, (2003).
  2. Ambrosetti, A. & Rabinowitz, P., Dual variational methods in critical point theory and applications, J. Funct. Analysis 14, (1973), 349-381.
  3. Bartsch, T., Liu, Z. & Weth, T., Nodal Solutions of a p-Laplacian Equation, Proc. London Math. Soc. (2005) 91 (1): 129-152.
  4. Bartsch, T. & Weth, T., A note on additional properties of sign changing solutions to superlinear ellliptic equations, Top. Methods Non. Anal., 22, (2003), 1-14.
  5. Brown, K. J. & Zhang, Y. The Nehari manifold for semilinear elliptic equation with a sign- changing weight function, J. Differential Equations, 193, (2003), 481-499.
  6. Brown, K. J. & Wu, Tsung-Fang, A fibering map approach to a semilinear elliptic boundary value problem, EJDE, Vol. 2007(2007), pp. 1-9.
  7. Carvalho, M. L. M., Goncalves, J. V. & da Silva, E. D., On quasilinear elliptic problems without the Ambrosetti-Rabinowitz condition, Journal Math Anal Appl. 426, (2015), 466-483.
  8. Cerami, G., On the existence of eigenvalues for a nonlinear boundary value problem, Annali di Matematica Pura ed Applicata 124, (1980), 161-179.
  9. Chung, N.T. & Toan, H.Q., On a nonlinear and non-homogeneous problem without (A-R) type condition in Orlicz-Sobolev spaces, Applied Mathematics and Computation 219, (2013), 7820-7829.
  10. Clément, Ph., García-Huidobro, M., Manásevich, R. & Schmitt, K., Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. 11, (2000), 33-62.
  11. Corrêa, Francisco Julio S.A., Carvalho, Marcos L., Goncalves, J.V.A., Silva, Kaye O., Positive solutions of strongly nonlinear elliptic problems, Asymptotic Analysis 93 (2015) 1-20.
  12. Donaldson, T. K. & Trudinger, N. S., Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis 8, (1971), 52-75.
  13. Drabek, P. & Pohozaev, S. I., Positive solutions for the p-Laplacian: application of the fibering method, Proc. Royal Soc. Edinburgh Sect A,127, (1997), 703-726.
  14. Fukagai, N., Ito, M. & Narukawa, K., Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on R N , Funkcialaj Ekvacioj 49, (2006), 235-267.
  15. Fukagai, N. & Narukawa, K., On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems, Annali di Matematica Pura ed Applicata 186 (2007) 539-564.
  16. Gossez, J. P., Nonlinear elliptic boundary value problems for equations with raplidy (or slowly) incressing coefficients, Trans. Amer. Math. Soc. 190, (1974), 163-205.
  17. Gossez, J. P., Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems, Nonlinear analysis, function spaces and applications, (Proc. Spring School, Horni Bradlo, 1978), Teubner, Leipzig, (1979), 59-94.
  18. Iacopetti, A. , Asymptotic analysis for radial sign-changing solutions of the Brezis-Nirenberg problem Annali di Matematica DOI 10.1007/s10231-014-0438-y (2015)
  19. Lam, N. & Lu, G., Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal. 24, (2014), 118-143.
  20. Li, Y., Wang, Z. & Zheng, J., Ground states of nonlinear Schrödinger equations with potentials, Ann. I. H. Poincaré 23, (2006), 829-837.
  21. Liu, Zhaoli & Wang, Zhi-Qiang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud. 4, (2004), 563-574.
  22. Miyagaki, O. H. & Souto, M. A. S., Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations 245, (2008), 3628-3638.
  23. Mugnai, D. & Papageorgiou, N. S., Wang's multiplicity result for superlinear (p, q)-equations without the Ambrosetti-Rabinowitz condition, Trans. Amer. Math. Soc. 366, (2014), 4919-4937.
  24. Nehari, Z., On a class of nonlinear second-order equations, Trans. Amer. Math. Soc. 95, (1960), 101-123.
  25. Pucci, P. & Serrin, J., The strong maximum principle revisited, J. Differential Equations 196, (2004), 1-66.
  26. Radulescu, V., Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Analysis: Theory, Methods and Applications 121 (2015), 336-369.
  27. Rao, M. N. & Ren, Z. D., Theory of Orlicz Spaces, Marcel Dekker, New York, (1985).
  28. Szulkin, A. & Weth, T., Ground state solutions for some indefnite variational problems, J. Funct. Anal., 257 (2009) 3802-3822.
  29. Szulkin, A. & Weth, T., The method of Nehari manifold. Handbook of nonconvex analysis and applications, 597-632, Int. Press, Somerville, MA, (2010).
  30. Tan, Z. & Fang, F., Orlicz-Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 402, (2013), 348-370.
  31. Zou, W., Sign Changing Critical Point Theory, Springer, New York, 2008.
  32. Wang, Z. Q., On superlinear elliptic problems, Ann. Inst. Henri Poincare Anal. Non. Lineaire, 8, (1991), 43-57.
  33. Willem, M., Minimax Theorems, Birkhauser Boston, Basel, Berlin, 1996. F. J. S. A. Corrêa email: fjsacorrea@gmail.com address: Universidade Federal de Campina Grande Unidade Acadêmica de Matemática 58.429-900 -Campina Grande -PB -Brazil M. L. M. Carvalho email: marcos leandro carvalho@ufg.br, Jose V. A. Goncalves email: goncalvesjva@ufg.br and E. D. Silva email: edcarlos@ufg.br