Transcriptional disruptions in Down syndrome: a case study in the Ts1Cje mouse cerebellum during post‐natal development (original) (raw)
Related papers
Transcriptional profiling of the postnatal brain of the Ts1Cje mouse model of Down syndrome
Genomics Data, 2014
The Ts1Cje mouse model of Down syndrome (DS) has partial trisomy of mouse chromosome 16 (MMU16), which is syntenic to human chromosome 21 (HSA21). It develops various neuropathological features demonstrated by DS patients such as reduced cerebellar volume [1] and altered hippocampus-dependent learning and memory . To understand the global gene expression effect of the partially triplicated MMU16 segment on mouse brain development, we performed the spatiotemporal transcriptome analysis of Ts1Cje and disomic control cerebral cortex, cerebellum and hippocampus harvested at four developmental time-points: postnatal day (P)1, P15, P30 and P84. Here, we provide a detailed description of the experimental and analysis procedures of the microarray dataset, which has been deposited in the Gene Expression Omnibus (GSE49050)database.
2005
The central nervous system of persons with Down syndrome presents cytoarchitectural abnormalities that likely result from gene-dosage effects affecting the expression of key developmental genes. To test this hypothesis, we have investigated the transcriptome of the cerebellum of the Ts1Cje mouse model of Down syndrome during postnatal development using microarrays and quantitative PCR (qPCR). Genes present in three copies were consistently overexpressed, with a mean ratio relative to euploid of 1.52 as determined by qPCR. Out of 63 three-copy genes tested, only five, nine and seven genes had ratios >2 or <1.2 at postnatal days 0 (P0), P15 and P30, respectively. This gene-dosage effect was associated with a dysregulation of the expression of some two-copy genes. Out of 8258 genes examined, the Ts1Cje/euploid ratios differed significantly from 1.0 for 406 (80 and 154 with ratios above 1.5 and below 0.7, respectively), 333 (11 above 1.5 and 55 below 0.7) and 246 genes (59 above 1.5 and 69 below 0.7) at P0, P15 and P30, respectively. Among the twocopy genes differentially expressed in the trisomic cerebellum, six homeobox genes, two belonging to the Notch pathway, were severely repressed. Overall, at P0, transcripts involved in cell differentiation and development were over-represented among the dysregulated genes, suggesting that cell differentiation and migration might be more altered than cell proliferation. Finally, global gene profiling revealed that transcription in Ts1Cje mice is more affected by the developmental changes than by the trisomic state, and that there is no apparent detectable delay in the postnatal development of the cerebellum of Ts1Cje mice. by guest on February 16, 2016 http://hmg.oxfordjournals.org/ Downloaded from