Competition between subdiffusion and Lévy flights: A Monte Carlo approach (original) (raw)

Abstract

In this paper we answer positively a question raised by Metzler and Klafter ͓Phys. Rep. 339, 1 ͑2000͔͒: can one see a competition between subdiffusion and Lévy flights in the framework of the fractional Fokker-Planck dynamics? Our method of Monte Carlo simulations demonstrates the competition on the level of realizations as well as on the level of probability density functions of the anomalous diffusion process. The simulation algorithm is based on a stochastic representation of the above dynamics.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (24)

  1. R. Metzler and J. Klafter, Phys. Rep. 339, 1 ͑2000͒.
  2. H. Risken, The Fokker-Planck Equation ͑Springer, Berlin, 1989͒.
  3. S. Jespersen, R. Metzler, and H. C. Fogedby, Phys. Rev. E 59, 2736 ͑1999͒.
  4. B. Szabat, K. Weron, and P. Hetman, Phys. Rev. E 75, 021114 ͑2007͒.
  5. S. G. Samko, A. A. Kilbas, and D. I. Maritchev, Integrals and Derivatives of the Fractional Order and Some of Their Appli- cations ͑Gordon and Breach, Amsterdam, 1993͒.
  6. R. Metzler, E. Barkai, and J. Klafter, Europhys. Lett. 46, 431 ͑1999͒.
  7. R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett. 82, 3563 ͑1999͒.
  8. A. K. Jonscher, A. Jurlewicz, and K. Weron, Contemp. Phys. 44, 329 ͑2003͒.
  9. E. Barkai, R. Metzler, and J. Klafter, Phys. Rev. E 61, 132 ͑2000͒.
  10. E. Heinsalu, M. Patriarca, I. Goychuk, G. Schmid, and P. Hänggi, Phys. Rev. E 73, 046133 ͑2006͒.
  11. B. Dybiec and E. Gudowska-Nowak, Phys. Rev. E 69, 016105 ͑2004͒.
  12. B. Dybiec, E. Gudowska-Nowak, and P. Hänggi, Phys. Rev. E 73, 046104 ͑2006͒.
  13. A. Janicki and A. Weron, Simulation and Chaotic Behaviour of ␣-Stable Stochastic Processes ͑Marcel Dekker, New York, 1994͒.
  14. ͓14͔ I. M. Sokolov, Phys. Rev. E 63, 011104 ͑2000͒; 63, 056111 ͑2001͒.
  15. A. A. Stanislavsky, Phys. Rev. E 67, 021111 ͑2003͒.
  16. A. A. Stanislavsky, Theor. Math. Phys. 138, 418 ͑2004͒.
  17. A. Piryatinska, A. I. Saichev, and W. A. Woyczynski, Physica A 349, 375 ͑2005͒.
  18. M. Magdziarz and K. Weron, Physica A 367, 1 ͑2006͒.
  19. A. Weron, K. Burnecki, Sz. Mercik, and K. Weron, Phys. Rev. E 71, 016113 ͑2005͒.
  20. M. Magdziarz, A. Weron, and K. Weron, Phys. Rev. E 75, 016708 ͑2007͒.
  21. ͓21͔ J. M. Chambers, C. Mallows, and B. W. Stuck, J. Am. Stat. Assoc. 71, 340 ͑1976͒.
  22. A. Janicki and A. Weron, Stat. Sci. 9, 109 ͑1994͒.
  23. R. Weron, Stat. Probab. Lett. 28, 165 ͑1996͒; Int. J. Mod. Phys. C 12, 209 ͑2001͒.
  24. ͓24͔ F.-Y. Ren, J.-R. Liang, W.-Y. Qiu, and J.-B. Xiao, J. Phys. A 39, 4911 ͑2006͒.