An overview of machine learning applications for smart buildings (original) (raw)
Related papers
Machine Learning for Smart and Energy-Efficient Buildings
arXiv (Cornell University), 2022
Energy consumption in buildings, both residential and commercial, accounts for approximately 40% of all energy usage in the U.S., and similar numbers are being reported from countries around the world. This significant amount of energy is used to maintain a comfortable, secure, and productive environment for the occupants. So, it is crucial that the energy consumption in buildings must be optimized, all the while maintaining satisfactory levels of occupant comfort, health, and safety. Recently, Machine Learning has been proven to be an invaluable tool in deriving important insights from data and optimizing various systems. In this work, we review the ways in which machine learning has been leveraged to make buildings smart and energy-efficient. For the convenience of readers, we provide a brief introduction of several machine learning paradigms and the components and functioning of each smart building system we cover. Finally, we discuss challenges faced while implementing machine learning algorithms in smart buildings and provide future avenues for research at the intersection of smart buildings and machine learning.
Machine Learning for Smart Building Applications: Review and Taxonomy
2018
The use of machine learning (ML) in smart building applications is reviewed in this paper. We split existing solutions into two main classes, occupant-centric vs. energy/devices centric. The first class groups solutions that use ML for aspects related to the occupants, including (1) occupancy estimation and identification, (2) activity recognition, and (3) estimating preferences and behavior. The second class groups solutions that use ML to estimate aspects related either to energy or devices. They are divided into three categories, (1) energy profiling and demand estimation, (2) appliances profiling and fault detection, and (3) inference on sensors. Solutions in each category are presented, discussed and compared, as well as open perspectives and research trends. Compared to related state-of-the-art survey papers, the contribution herein is to provide a comprehensive and holistic review from the ML perspectives rather than architectural and technical aspects of existing building ma...
Deep Reinforcement Learning in Buildings
Proceedings of the 1st International Workshop on Reinforcement Learning for Energy Management in Buildings & Cities
As deep reinforcement learning (DRL) continues to gain interest in the smart building research community, there is a transition from simulation-based evaluations to deploying DRL control strategies in actual buildings. While the efficacy of a solution could depend on a particular implementation, there are common obstacles that developers have to overcome to deliver an effective controller. Additionally, a deployment in a physical building can invalidate some of the assumptions made during the controller development. Assumptions on the sensor placement or on the equipment behavior can quickly come undone. This paper presents some of the significant assumptions made during the development of DRL based controllers that could affect their operations in a physical building. Furthermore, a preliminary evaluation revealed that controllers developed with some of these assumptions can incur twice the expected costs when they are deployed in a building. CCS CONCEPTS • Computing methodologies → Reinforcement learning; Learning from demonstrations; Control methods; • Computer systems organization → Sensors and actuators.
The Role of Machine Learning and the Internet of Things in Smart Buildings for Energy Efficiency
Applied Sciences
Machine learning can be used to automate a wide range of tasks. Smart buildings, which use the Internet of Things (IoT) to connect building operations, enable activities, such as monitoring temperature, safety, and maintenance, for easier controlling via mobile devices and computers. Smart buildings are becoming core aspects in larger system integrations as the IoT is becoming increasingly widespread. The IoT plays an important role in smart buildings and provides facilities that improve human security by using effective technology-based life-saving strategies. This review highlights the role of IoT devices in smart buildings. The IoT devices platform and its components are highlighted in this review. Furthermore, this review provides security challenges regarding IoT and smart buildings. The main factors pertaining to smart buildings are described and the different methods of machine learning in combination with IoT technologies are also described to improve the effectiveness of sm...
Artificial Intelligence Evolution in Smart Buildings for Energy Efficiency
Applied Sciences
The emerging concept of smart buildings, which requires the incorporation of sensors and big data (BD) and utilizes artificial intelligence (AI), promises to usher in a new age of urban energy efficiency. By using AI technologies in smart buildings, energy consumption can be reduced through better control, improved reliability, and automation. This paper is an in-depth review of recent studies on the application of artificial intelligence (AI) technologies in smart buildings through the concept of a building management system (BMS) and demand response programs (DRPs). In addition to elaborating on the principles and applications of the AI-based modeling approaches widely used in building energy use prediction, an evaluation framework is introduced and used for assessing the recent research conducted in this field and across the major AI domains, including energy, comfort, design, and maintenance. Finally, the paper includes a discussion on the open challenges and future directions o...
Machine Learning Practices During the Operational Phase of Buildings: A Critical Review
Applied Engineering Letters, 2024
Machine Learning (ML) is gaining attention in civil engineering especially within operational phase of building life cycle. This phase is crucial for managing every energy aspect while ensuring occupant comfort. Previous ML experiments have explored occupant behavior, occupancy estimation, load prediction, defect detection, and Heating, Ventilation, and Air Conditioning (HVAC) system diagnostics. However, challenges such as ML transferability and limited literature on ML components for the operational phase hinder broader industry adoption. This critical review aims to assess the potential of ML in building operations, focusing on energy consumption, big data control, reinforcement learning, and thermal comfort modeling. By identifying knowledge gaps, the study recommends further research to leverage ML for sustainable energy consumption and occupant comfort. It highlights ML's promising role in striking a balance between energy efficiency and occupant wellbeing.
State-of-the-Art on Research and Applications of Machine Learning in the Building Life Cycle
Energy and Buildings
Fueled by big data, powerful and affordable computing resources, and advanced algorithms, machine learning has been explored and applied to buildings research for the past decades and has demonstrated its potential to enhance building performance. This study systematically surveyed how machine learning has been applied at different stages of building life cycle. By conducting a literature search on the Web of Knowledge platform, we found 9579 papers in this field and selected 153 papers for an in-depth review. The number of published papers is increasing year by year, with a focus on building design, operation, and control. However, no study was found using machine learning in building commissioning. There are successful pilot studies on fault detection and diagnosis of HVAC equipment and systems, load prediction, energy baseline estimate, load shape clustering, occupancy prediction, and learning occupant behaviors and energy use patterns. None of the existing studies were adopted broadly by the building industry, due to common challenges including (1) lack of large scale labeled data to train and validate the model, (2) lack of model transferability, which limits a model trained with one data-rich building to be used in another building with limited data, (3) lack of strong justification of costs and benefits of deploying machine learning, and (4) the performance might not be reliable and robust for the stated goals, as the method might work for some buildings but could not be generalized to others. Findings from the study can inform future machine learning research to improve occupant comfort, energy efficiency, demand flexibility, and resilience of buildings, as well as to inspire young researchers in the field to explore multidisciplinary approaches that integrate building science, computing science, data science, and social science.
Machine Learning, Big Data, And Smart Buildings: A Comprehensive Survey
2019
Future buildings will offer new convenience, comfort, and efficiency possibilities to their residents. Changes will occur to the way people live as technology involves into people's lives and information processing is fully integrated into their daily living activities and objects. The future expectation of smart buildings includes making the residents' experience as easy and comfortable as possible. The massive streaming data generated and captured by smart building appliances and devices contains valuable information that needs to be mined to facilitate timely actions and better decision making. Machine learning and big data analytics will undoubtedly play a critical role to enable the delivery of such smart services. In this paper, we survey the area of smart building with a special focus on the role of techniques from machine learning and big data analytics. This survey also reviews the current trends and challenges faced in the development of smart building services.
Renewable and Sustainable Energy Reviews, 2021
Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated around this problem. Especially, the buildings energy management systems must improve in the next years. Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work presents a systematic review of the literature on researches that have been done in recent years to improve energy management systems for smart building using artificial intelligence techniques. An originality of the work is that they are grouped according to the concept of "Autonomous Cycles of Data Analysis Tasks", which defines that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decisionmaking tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of the work allows us to establish not only the positioning of the researches, but also, the visualization of the current challenges and opportunities in each domain. We have identified that many types of researches are in the domain of decision-making (a large majority on optimization and control tasks), and defined potential projects related to the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among others.