Time series forecasting on solar irradiation using deep learning (original) (raw)

Deep Learning based Models for Solar Energy Prediction

Advances in Science, Technology and Engineering Systems Journal, 2021

Solar energy becomes widely used in the global power grid. Therefore, enhancing the accuracy of solar energy predictions is essential for the efficient planning, managing and operating of power systems. To minimize the negatives impacts of photovoltaics on electricity and energy systems, an approach to highly accurate and advanced forecasting is urgently needed. In this paper, we studied the use of Deep Learning techniques for the solar energy prediction, in particular Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU). The proposed prediction methods are based on real meteorological data series of Errachidia province, from 2016 to 2018. A set of error metrics were adopted to evaluate the efficiency of these models for real-time photovoltaic forecasting, to achieve more reliable grid management and safe operation, in addition to improve the cost-effectiveness of the photovoltaic system. The results reveal that RNN and LSTM outperform slightly GRU thanks to their capacity to maintain long-term dependencies in time series data.

A Proposed Model to Forecast Hourly Global Solar Irradiation Based on Satellite Derived Data, Deep Learning and Machine Learning Approaches

Journal of Ecological Engineering, 2020

An accurate short-term global solar irradiation (GHI) forecast is essential for integrating the photovoltaic systems into the electricity grid by reducing some of the problems caused by the intermittency of solar energy, including rapid fluctuations in energy, management storage, and the high costs of electricity. In this paper, the authors proposed a new hybrid approach to forecast hourly GHI for the Al-Hoceima city, Morocco. For this purpose, a deep long short-term memory network is trained on a combination of the hourly GHI ground measurements from the meteorological station of Al-Hoceima and the satellite-derived GHI from the neighbouring pixels of the point of interest. Xgboost, Random Forest, and Recursive Feature Elimination with cross-validation were used to select the most relevant features, the lagged satellite-derived GHI around the point of interest, as input to the proposed model where the best forecasting model is selected using the Grid Search algorithm. The simulation and results showed that the proposed approach gives high performance and outperformed other benchmark approaches.

Short-Term Solar Irradiance Forecasting Using Deep Learning Techniques: A Comprehensive Case Study

IEEE Access

Reliable estimation of solar irradiance is required for many solar energy applications such as photovoltaics, water heating, cooking, solar microgrids, etc. Deep Learning techniques have shown outstanding behaviour for analysing complex datasets efficiently with high accuracy. Multi-Layer Perceptron (MLP), Long-Short Term Memory (LSTM), and Gated Recurrent Unit (RGU) techniques are found to be the most competitive techniques in the literature for solar irradiance forecasting. Therefore, in this study, a comparative analysis of those models is carried out using eleven years of NASA satellite data for training and testing. The grid search technique is used to optimize the networks architectures to ensure the best performance of the models for forecasting daily global solar irradiance. The results show that all models have similar accuracy with a mean square error close to 0.017 kWh/m2/day. However, the speed of training varies between 17 and 208 seconds for each model where GRU has shown higher speed than LSTM despite of containing more layers due to their computational complexity. The MLP is found to be the most efficient model due to using a low number of parameters 49,281 as compared to 1,025,793 for GRU. The study is of importance for reliable solar irradiance forecasting for any location worldwide. INDEX TERMS Solar energy, solar irradiance, forecasting, machine learning techniques, artificial neural network.

Sequence to sequence deep learning models for solar irradiation forecasting

2019 IEEE Milan PowerTech, 2019

The energy output a photo voltaic(PV) panel is a function of solar irradiation and weather parameters like temperature and wind speed etc. A general measure for solar irradiation called Global Horizontal Irradiance (GHI), customarily reported in Watt/meter 2 , is a generic indicator for this intermittent energy resource. An accurate prediction of GHI is necessary for reliable grid integration of the renewable as well as for power market trading. While some machine learning techniques are well introduced along with the traditional timeseries forecasting techniques, deep-learning techniques remains less explored for the task at hand. In this paper we give deep learning models suitable for sequence to sequence prediction of GHI. The deep learning models are reported for shortterm forecasting {1 − 24} hour along with the state-of-the art techniques like Gradient Boosted Regression Trees(GBRT) and Feed Forward Neural Networks(FFNN). We have checked that spatio-temporal features like wind direction, wind speed and GHI of neighboring location improves the prediction accuracy of the deep learning models significantly. Among the various sequence-to-sequence encoder-decoder models LSTM performed superior, handling shortcomings of the stateof-the-art techniques.

Hybrid deep learning models for time series forecasting of solar power

Forecasting solar power production accurately is critical for effectively planning and managing renewable energy systems. This paper introduces and investigates novel hybrid deep learning models for solar power forecasting using time series data. The research analyzes the efficacy of various models for capturing the complex patterns present in solar power data. In this study, all of the possible combinations of convolutional neural network (CNN), long short-term memory (LSTM), and transformer (TF) models are experimented. These hybrid models also compared with the single CNN, LSTM and TF models with respect to different kinds of optimizers. Three different evaluation metrics are also employed for performance analysis. Results show that the CNN-LSTM-TF hybrid model outperforms the other models, with a mean absolute error (MAE) of 0.551% when using the Nadam optimizer. However, the TF-LSTM model has relatively low performance, with an MAE of 16.17%, highlighting the difficulties in making reliable predictions of solar power. This result provides valuable insights for optimizing and planning renewable energy systems, highlighting the significance of selecting appropriate models and optimizers for accurate solar power forecasting. This is the first time such a comprehensive work presented that also involves transformer networks in hybrid models for solar power forecasting.

Solar power forecasting using deep learning techniques

IEEE Access

The recent rapid and sudden growth of solar photovoltaic (PV) technology presents a future challenge for the electricity sector agents responsible for the coordination and distribution of electricity given the direct dependence of this type of technology on climatic and meteorological conditions. Therefore, the development of models that allow reliable future prediction, in the short term, of solar PV generation will be of paramount importance, in order to maintain a balanced and comprehensive operation. This article discusses a method for predicting the generated power, in the short term, of photovoltaic power plants, by means of deep learning techniques. To fulfill the above, a deep learning technique based on the Long Short Term Memory (LSTM) algorithm is evaluated with respect to its ability to forecast solar power data. An evaluation of the performance of the LSTM network has been conducted and compared it with the Multi-layer Perceptron (MLP) network using: Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Root Mean Squared Error (RMSE) and Coefficient of Determination (R 2 ). The prediction result shows that the LSTM network gives the best results for each category of days, thus it provides reliable information that enables more efficient operation of photovoltaic power plants in the future. The binomial formed by the concepts of deep learning and energy efficiency seems to have a promising future, especially regarding promoting energy sustainability, decarburization, and the digitization of the electricity sector.

Time series forecasting on multi-variate solar radiation data using deep learning (LSTM)

TURKISH JOURNAL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCES

Energy management is an emerging problem nowadays and utilization of renewable energy sources is an efficient solution. Solar radiation is an important source for electricity generation. For effective utilization, it is important to know precisely the amount from different sources and at different horizons: minutes, hours, and days. Depending on the horizon, two main classes of methods can be used to forecast the solar radiation: statistical time series forecasting methods for short to midterm horizons and numerical weather prediction methods for medium-to long-term horizons. Although statistical time series forecasting methods are utilized in the literature, there are a limited number of studies that utilize deep artificial neural networks. In this study, we focus on statistical time series forecasting methods for short-term horizons (1 h). The aim of this study is to discover the effect of using multivariate data on solar radiation forecasting using a deep learning approach. In this context, we propose a multivariate forecast model that uses a combination of different meteorological variables, such as temperature, humidity, and nebulosity. In the proposed model, recurrent neural network (RNN) variation, namely a long short-term memory (LSTM) unit is used. With an experimental approach, the effect of each meteorological variable is investigated. By hyperparameter tuning, optimal parameters are found in order to construct the best models that fit the global solar radiation data. We compared the results with those of previous studies and we found that the multivariate approach performed better than the previous univariate models did. In further experiments, the effect of combining the most effective parameters was investigated and, as a result, we observed that temperature and nebulosity are the most effective parameters for predicting future solar radiance.

Solar Irradiance Forecasting using Deep Learning Approaches

National Undergraduate Research Symposium of National Science and Technology Commission (NASTEC), 2019

The purpose of this study is to come up with a most accurate model for predicting the Solar photovoltaic (PV) power generation and Solar irradiance. For this study, the data is collected from Faculty of Engineering, University of Jaffa solar measuring station. In this paper, deep learning based univariate long short-term memory (LSTM) approach is introduced to predict the Solar irradiance. A univariate LSTM and auto-regressive integrated moving average (ARIMA) based time series approaches are compared. Both models are evaluated using root mean-square error (RMSE). This study suggests that univariate LSTM approach performs well over ARIMA approach.

Solar radiation forecasting by using deep neural networks in Eski̇şehi̇r

Sigma Journal of Engineering and Natural Sciences – Sigma Mühendislik ve Fen Bilimleri Dergisi, 2021

According to the World Economic Outlook (WEO), the global demand for energy is presum- ably going to be increased due to growing the world’s population up during the upcoming two decades. As a result of that, apprehensions about environmental effects, which appear as a re- sult of greenhouse gases are grown and cleaner energy technologies are developed. This clearly shows that extended growth of the worldwide market share of clean energy. Solar energy is considered as one of the fundamental types of renewable energy. For this reason, the need for a predictive model that effectively observes solar energy conversion with high performance becomes urgent. In this paper, classic empirical, artificial neural network (ANN), deep neural network (DNN), and time series models are applied, and their results are compared to each other to find the most accurate model for daily global solar radiation (DGSR) estimation. In addition, four regression models have been developed and applied for DGSR e...

The Solar Energy Forecasting by Pearson Correlation using Deep Learning Techniques

EARTH SCIENCES AND HUMAN CONSTRUCTIONS

Solar energy is one of the most important renewable energy sources (RES) with many advantages as compared to other types of sources. Climate change is gradually becoming a global challenge for the sustainable development of humanity. There will potentially be two key features, for future electricity systems, high penetration or even dominance of renewable energy sources for clean energy e.g., onshore/offshore wind and solar PV. Solar energy forecasting is essential for the energy market. Machine learning and deep learning techniques are commonly used for providing an accurate forecasting of the energy that will be produced. The weather factors are related to each other in terms of influence, a wide range of features that are necessary to consider in the prediction process. In this paper, the effect of some atmospheric factors like Evapotranspiration and soil temperature are investigated using deep learning techniques. Higher accuracy is achieved when new features related to solar ir...