Nanostructured Thermoelectric Chalcogenides (original) (raw)
Bringing Thermoelectricity into Reality
Thermoelectric materials are outstanding to transform temperature differences directly and reversibly into electrical voltage. Exploiting waste heat recovery as a source of power generation could help towards energy sustainability. Recently, the SnSe semiconductor was identified, in single-crystal form, as a mid-temperature thermoelectric material with record high figure of merit, high power factor and surprisingly low thermal conductivity. We describe the preparation of polycrystals of alloys of SnSe obtained by arc-melting; a rapid synthesis that results in strongly nanostructured samples with low thermal conductivity, advantageous for thermoelectricity, approaching the amorphous limit, around 0.3-0.5 W/mK. An initial screening of novel samples Sn 1−x M x Se, by alloying with 3d and 4d transition metals such as M = Mn, Y, Ag, Mo, Cd or Au, provides for a means to optimize the power factor. M=Mo, Ag, with excellent values, are described in detail with characterization by x-ray powder diffraction (XRD), scanning electron microscopy (SEM), and electronic and thermal transport measurements. Rietveld analysis of XRD data demonstrates near-perfect stoichiometries of the above-mentioned alloys. SEM analysis shows stacking of nanosized sheets, with large surfaces parallel to layered slabs. An apparatus was developed for the simultaneous measurement of the Seebeck coefficient and electric conductivity at elevated temperatures.