Single-Cell Chemical Lysis on Microfluidic Chips with Arrays of Microwells (original) (raw)

Single-Cell Chemical Lysis on Microfluidic Chips with Arrays

2011

Many conventional biochemical assays are performed using populations of cells to determine their quantitative biomolecular profiles. However, population averages do not reflect actual physiological processes in individual cells, which occur either on short time scales or nonsynchronously. Therefore, accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. Microfluidic chips with arrays of microwells were developed for single-cell chemical lysis in the present study. The cellular occupancy in 30-μm-diameter microwells (91.45%) was higher than that in 20-μm-diameter microwells (83.19%) at an injection flow rate of 2.8 μL/min. However, most of the occupied 20-μm-diameter microwells contained individual cells. The results of chemical lysis experiments at the single-cell level indicate that cell membranes were gradually lysed as the lysis buffer was injected; they were fully lysed after 12 s. Single-cell chemical lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis.

Single Cell Analysis on Microfluidic Devices

Microchip Capillary Electrophoresis

A microfluidic device integrated with valves and a peristaltic pump was fabricated using multilayer soft lithography to analyze single cells. Fluid flow was generated and mammalian cells were transported through the channel manifold using the peristaltic pump. A laser beam was focused at the cross-section of the channels so fluorescence of individual labeled intact cells could be detected. Triggered by the fluorescence signals of intact cells, valves could be actuated so fluid flow was stopped and a single cell was trapped at the intersection. The cell was then rapidly lysed through the application of large electric fields and injected into a separation channel. Various conditions such as channel geometry, pumping frequency, control channel size, and pump location were optimized for cell transport. A Labview program was developed to control the actuation of the trapping valves and a control device was fabricated for operation of the peristaltic pump. Cells were labeled with a cytosolic dye, Calcein AM or Oregon Green, and cell transport and lysis were visualized using epi-fluorescent microscope. The cells were transported at rates of ~ 1mm/s. This rate was optimized to obtain both high throughput and single cell trapping. An electric field of 850-900 V/cm was applied so cells could be efficiently lysed and cell lysate could be electrophoretically separated. Calcein AM and Oregon Green released from single cells were separated and detected by laser-induced fluorescence. The fluorescence signals were collected by PMT and sampled with a multi-function I/O card. This analyzing method using microchip may be applied to explore other cellular contents from single cells in the future. Chapter 1-Introduction Single cell analysis has developed rapidly in recent years due to its importance in better understanding cell biology or physiology. The investigation of how biological systems respond to the dynamics of environmental stimuli can help to determine the causes of many diseases. Microfluidic technologies provide a progressive platform to analyze single cells.

Microfluidic Platforms for Single-Cell Analysis

Annual Review of Biomedical Engineering, 2010

Microfluidics, the study and control of the fluidic behavior in microstructures, has emerged as an important enabling tool for single-cell chemical analysis. The complex procedures for chemical cytometry experiments can be integrated into a single microfabricated device. The capability of handling a volume of liquid as small as picoliters can be utilized to manipulate cells, perform controlled cell lysis and chemical reactions, and efficiently minimize sample dilution after lysis. The separation modalities such as chromatography and electrophoresis within microchannels are incorporated to analyze various types of intracellular components quantitatively. The microfluidic approach offers a rapid, accurate, and cost-effective tool for single-cell biology. We present an overview of the recent developments in microfluidic technology for chemical-content analysis of individual cells.

Microfluidic Device for Single-Cell Analysis

Analytical Chemistry, 2003

We have developed a novel microfluidic device constructed from poly(dimethylsiloxane) using multilayer soft lithography technology for the analysis of single cells. The microfluidic network enables the passive and gentle separation of a single cell from the bulk cell suspension, and integrated valves and pumps enable the precise delivery of nanoliter volumes of reagents to that cell. Various applications are demonstrated, including cell viability assays, ionophore-mediated intracellular Ca 2+ flux measurements, and multistep receptor-mediated Ca 2+ measurements. These assays, and others, are achieved with significant improvements in reagent consumption, analysis time, and temporal resolution over macroscale alternatives.

Single-Cell Electric Lysis on an Electroosmotic-Driven Microfluidic Chip with Arrays of Microwells

Sensors, 2012

Accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. An electroosmotic-driven microfluidic chip with arrays of 30-µm-diameter microwells was developed for single-cell electric lysis in the present study. The cellular occupancy in the microwells when the applied voltage was 5 V (82.4%) was slightly higher than that at an applied voltage of 10 V (81.8%). When the applied voltage was increased to 15 V, the cellular occupancy in the microwells dropped to 64.3%. More than 50% of the occupied microwells contain individual cells. The results of electric lysis experiments at the single-cell level indicate that the cells were gradually lysed as the DC voltage of 30 V was applied; the cell was fully lysed after 25 s. Single-cell electric lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis.

A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis

Scientific Reports, 2021

The need for high throughput single cell screening platforms has been increasing with advancements in genomics and proteomics to identify heterogeneity, unique cell subsets or super mutants from thousands of cells within a population. For real-time monitoring of enzyme kinetics and protein expression profiling, valve-based microfluidics or pneumatic valving that can compartmentalize single cells is advantageous by providing on-demand fluid exchange capability for several steps in assay protocol and on-chip culturing. However, this technique is throughput limited by the number of compartments in the array. Thus, one big challenge lies in increasing the number of microvalves to several thousand that can be actuated in the microfluidic device to confine enzymes and substrates in picoliter volumes. This work explores the design and optimizations done on a microfluidic platform to achieve high-throughput single cell compartmentalization as applied to single-cell enzymatic assay for prote...

Microfluidic device for single-cell analysis and gradient generation

2008

Cellular behavior has been investigated by utilizing macroscale methods that measure average values over a population of cells. The present study focused on the development of a microfluidic device for single-cell analysis and gradient-generation. A hybrid PDMS/glass microfluidic device was fabricated using the Soft Lithography process. The master mold was fabricated using a new technique of Rapid Prototyping in which the master mold is directly fabricated by double exposure on a Direct Laser machine (DWL) without the need of any photomask. Approaches to localize the same cell over long periods were improved as well as a new methodology that force cells to enter the microchannels. The conceived microfluidic platform was applied to study Saccharomyces cerevisiae yeast cells carrying out two fluorescent proteins, one of them fused with αSyn, a protein related to Parkinson’s Disease. The results obtained demonstrate the effectiveness of the device to establish a suitable environment fo...

Parallel single-cell analysis microfluidic platform

ELECTROPHORESIS, 2011

We report a PDMS microfluidic platform for parallel single-cell analysis (PaSCAl) as a powerful tool to decipher the heterogeneity found in cell populations. Cells are trapped individually in dedicated pockets, and thereafter, a number of invasive or non-invasive analysis schemes are performed. First, we report single-cell trapping in a fast (2-5 min) and reproducible manner with a single-cell capture yield of 85% using two cell lines (P3x63Ag8 and MCF-7), employing a protocol which is scalable and easily amenable to automation. Following this, a mixed population of P3x63Ag8 and MCF-7 cells is stained in situ using the nucleic acid probe (Hoechst) and a phycoerythrin-labeled monoclonal antibody directed at EpCAM present on the surface of the breast cancer cells MCF-7 and absent on the myeloma cells P3x63Ag8 to illustrate the potential of the device to analyze cell population heterogeneity. Next, cells are porated in situ using chemicals in a reversible (digitonin) or irreversible way (lithium dodecyl sulfate). This is visualized by the transportation of fluorescent dyes through the membrane (propidium iodide and calcein). Finally, an electrical protocol is developed for combined cell permeabilization and electroosmotic flow (EOF)-based extraction of the cell content. It is validated here using calcein-loaded cells and visualized through the progressive recovery of calcein in the side channels, indicating successful retrieval of individual cell content.