Sentiment Analysis: Comparative Analysis Of Multilingual Sentiment And Opinion Classification Techniques (original) (raw)
Related papers
A Literature Survey on Multilingual Sentiment Analysis
Sentiment analysis which often goes by the name opinion mining is one of the prominent field in lots of research is going on due to its endless application like social media monitoring, product reviews etc. But due to the prominent use of social media the use of multilingual statements has become most common as user tends to in their own comfort zone. These multilingual statement arises due the use of more than one language to make a statement. Due to lack of clear grammatical structure it is very difficult to find correct sentiment out of it. We present some techniques which can be used to analyse these multilingual statement correctly.
Multilingual Sentiment Analysis: A Systematic Literature Review
Pertanika Journal of Science and Technology
With the explosive growth of social media, the online community can freely express their opinions without disclosing their identities. People with hidden agendas can easily post fake opinions to discredit target products, services, politicians, or organizations. With these big data, monitoring opinions and distilling their sentiments remain a formidable task because of the proliferation of diverse sites with a large volume of opinions that are portrayed in multilingual. Therefore, this paper aims to provide a systematic literature review on multilingual sentiment analysis, which summarises the common languages supported in multilingual sentiment analysis, pre-processing techniques, existing sentiment analysis approaches, and evaluation models that have been used for multilingual sentiment analysis. By following the systematic literature review, the findings revealed, most of the models supported two languages, and English is seen as the most used language in sentiment analysis studi...
Multilingual Sentiment Analysis
2020
Sentiment analysis has empowered researchers and analysts to extract opinions of people regarding various products, services, events and other entities. This has been made possible due to an astronomical rise in the amount of text data being made available on the Internet, not only in English but also in many regional languages around the world as well, along with the recent advancements in the field of machine learning and deep learning. It has been observed that deep learning models produce the state-of-the-art prediction results without the need for domain expertise or handcrafted feature engineering, unlike traditional machine learning-based algorithms. In this chapter, we wish to focus on sentiment analysis of various low resource languages having limited sentiment analysis resources such as annotated datasets, word embeddings and sentiment lexicons, along with English. Techniques to refine word embeddings for sentiment analysis and improve word embedding coverage in low resour...
A Survey of Cross-lingual Sentiment Analysis: Methodologies, Models and Evaluations
Data Science and Engineering
Cross-lingual sentiment analysis (CLSA) leverages one or several source languages to help the low-resource languages to perform sentiment analysis. Therefore, the problem of lack of annotated corpora in many non-English languages can be alleviated. Along with the development of economic globalization, CLSA has attracted much attention in the field of sentiment analysis and the last decade has seen a surge of researches in this area. Numerous methods, datasets and evaluation metrics have been proposed in the literature, raising the need for a comprehensive and updated survey. This paper fills the gap by reviewing the state-of-the-art CLSA approaches from 2004 to the present. This paper teases out the research context of cross-lingual sentiment analysis and elaborates the following methods in detail: (1) The early main methods of CLSA, including those based on Machine Translation and its improved variants, parallel corpora or bilingual sentiment lexicon; (2) CLSA based on cross-lingua...