Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania (original) (raw)

Untargeted metabolomic analysis of miltefosine action in Leishmania infantum reveals changes to the internal lipid metabolism

International Journal for Parasitology: Drugs and Drug Resistance, 2014

There are many theories as to the mode of action of miltefosine against Leishmania including alterations to the membrane lipid content, induction of apoptosis and modulation of macrophage responses. Here we perform untargeted metabolomics to elucidate the metabolic changes involved in miltefosine action. Over 800 metabolites were detected, 10% of which were significantly altered after 3.75 h. Many of the changes related to an increase in alkane fragment and sugar release. Fragment release is synchronised with reactive oxygen species production, but native membrane phospholipids remain intact. Signs of DNA damage were also detected as were changes to the levels of some thiols and polyamines. After 5 h of miltefosine treatment the cells showed depleted levels of most metabolites, indicating that the cells' outer membrane integrity had become compromised and internal metabolites were escaping upon cell death. In miltefosine resistant cells, the drug was not internalised and the changes to the internal metabolite levels were not seen. In contrast, cells resistant to antimony (SbIII) had similar corresponding alterations to the levels of internal metabolites as wild-type cells. A detailed knowledge of the mode of action of miltefosine will be important to inform the design of combination therapies to combat leishmaniasis, something that the research community should be prioritising in the coming years.

Comparative transcript expression analysis of miltefosine-sensitive and miltefosine-resistant Leishmania donovani

Parasitology Research, 2014

Leishmania donovani is the causative agent of anthroponotic visceral leishmaniasis in the Indian subcontinent. Oral miltefosine therapy has recently replaced antimonials in endemic areas. However, the drug is at risk of emergence of resistance due to unrestricted use, and, already, there are indications towards decline in treatment efficacy. Hence, understanding the mechanism of miltefosine resistance in the parasite is crucial. We employed genomic microarray analysis to compare the gene expression patterns of miltefosineresistant and miltefosine-sensitive L. donovani. Three hundred eleven genes, representing ∼3.9 % of the total Leishmania genome, belonging to various functional categories including metabolic pathways, transporters, and cellular components, were differentially expressed in miltefosine-resistant parasite. Results in the present study highlighted the probable mechanisms by which the parasite sustains miltefosine pressure including (1) compromised DNA replication/repair mechanism, (2) reduced protein synthesis and degradation, (3) altered energy utilization via increased lipid degradation, (4) increased ABC 1-mediated drug efflux, and (5) increased antioxidant defense mechanism via elevated trypanothione metabolism. The study provided the comprehensive insight into the underlying mechanism of miltefosine resistance in L. donovani that may be useful to design strategies to increase lifespan of this important oral antileishmanial drug.

Increased miltefosine tolerance in clinical isolates of Leishmania donovani is associated with reduced drug accumulation, increased infectivity and resistance to oxidative stress

PLoS neglected tropical diseases, 2017

Miltefosine (MIL) is an oral antileishmanial drug used for treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Recent reports indicate a significant decline in its efficacy with a high rate of relapse in VL as well as post kala-azar dermal leishmaniasis (PKDL). We investigated the parasitic factors apparently involved in miltefosine unresponsiveness in clinical isolates of Leishmania donovani. L. donovani isolated from patients of VL and PKDL at pretreatment stage (LdPreTx, n = 9), patients that relapsed after MIL treatment (LdRelapse, n = 7) and parasites made experimentally resistant to MIL (LdM30) were included in this study. MIL uptake was estimated using liquid chromatography coupled mass spectrometry. Reactive oxygen species and intracellular thiol content were measured fluorometrically. Q-PCR was used to assess the differential expression of genes associated with MIL resistance. LdRelapse parasites exhibited higher IC50 both at promastigote level (7.92 ± 1.30...

Identification of Miltefosine resistance associated genes in Leishmania donovani

Background Miltefosine (MIL) is an oral antileishmanial drug used for treatment of visceral leishmaniasis (VL) in the Indian subcontinent. Recent reports indicate a significant decline in its efficacy with a high rate of relapse in VL as well as post kala-azar dermal leishmaniasis (PKDL). We investigated the parasitic factors apparently involved in miltefosine unresponsiveness in clinical isolates of Leishmania donovani. Methodology L. donovani isolated from patients of VL and PKDL at pretreatment stage (LdPreTx, n = 9), patients that relapsed after MIL treatment (LdRelapse, n = 7) and parasites made experimentally resistant to MIL (LdM30) were included in this study. MIL uptake was estimated using liquid chromatography coupled mass spectrometry. Reactive oxygen species and intracellular thiol content were measured fluorometrically. Q-PCR was used to assess the differential expression of genes associated with MIL resistance. Results LdRelapse parasites exhibited higher IC 50 both at promastigote level (7.92 ± 1.30 μM) and at intracellular amastigote level (11.35 ± 6.48 μM) when compared with LdPreTx parasites (3.27 ± 1.52 μM) and (3.85 ± 3.11 μM), respectively. The percent infectivity (72 hrs post infection) of LdRelapse parasites was significantly higher (80.71 ± 5.67%, P<0.001) in comparison to LdPreTx (60.44 ± 2.80%). MIL accumulation was significantly lower in LdRelapse parasites (1.7 fold, P<0.001) and in LdM30 parasites (2.4 fold, P<0.001) when compared

Mechanisms of experimental resistance of Leishmania to miltefosine: Implications for clinical use

Drug Resistance Updates, 2006

Miltefosine (hexadecylphosphocholine, MIL), registered as Impavido ® , has become the first oral drug for the treatment of visceral and cutaneous leishmanasis. MIL is a simple molecule, very stable, relatively safe and highly efficient in clinical trials. However, MIL requires a long treatment course (28 days) and has a long half-life (around 150 h), which might accelerate the emergence of drug resistance in case of inadequate use. The mechanisms of MIL resistance have been studied in vitro with experimental resistant lines. Resistance was shown to develop quickly in Leishmania promastigotes. Interestingly, a decreased MIL accumulation has always accounted for the resistance phenotype. The lower MIL accumulation can be achieved by two independent mechanisms: (i) an increase in drug efflux, mediated by the overexpression of the ABC transporter P-glycoprotein, and (ii) a decrease in drug uptake, which is easily achieved by the inactivation of any one of the two proteins known to be responsible for the MIL uptake, the MIL transporter LdMT and its beta subunit LdRos3. Policies concerning a proper use of this drug should be followed and supervised by health authorities of endemic areas to minimalize the risk for the appearance of drug failures and to ensure a long life span for this effective oral drug.