Crystal Structure of the Engineered Neutralizing Antibody M18 Complexed to Domain 4 of the Anthrax Protective Antigen (original) (raw)

Alanine-scanning Mutations in Domain 4 of Anthrax Toxin Protective Antigen Reveal Residues Important for Binding to the Cellular Receptor and to a Neutralizing Monoclonal Antibody

Journal of Biological Chemistry, 2003

A panel of variants with alanine substitutions in the small loop of anthrax toxin protective antigen domain 4 was created to determine individual amino acid residues critical for interactions with the cellular receptor and with a neutralizing monoclonal antibody, 14B7. Substituted protective antigen proteins were analyzed by cellular cytotoxicity assays, and their interactions with antibody were measured by plasmon surface resonance and analytical ultracentrifugation. Residue Asp 683 was the most critical for cell binding and toxicity, causing an ϳ1000-fold reduction in toxicity, but was not a large factor for interactions with 14B7. Substitutions in residues Tyr 681 , Asn 682 , and Pro 686 also reduced toxicity significantly, by 10 -100-fold. Of these, only Asn 682 and Pro 686 were also critical for interactions with 14B7. However, residues Lys 684 , Leu 685 , Leu 687 , and Tyr 688 were critical for 14B7 binding without greatly affecting toxicity. The K684A and L685A variants exhibited wild type levels of toxicity in cell culture assays; the L687A and Y688A variants were reduced only 1.5-and 5-fold, respectively.

Structural Determinants for the Binding of Anthrax Lethal Factor to Oligomeric Protective Antigen

Journal of Biological Chemistry, 2006

Anthrax lethal toxin assembles at the surface of mammalian cells when the lethal factor (LF) binds via its amino-terminal domain, LF N , to oligomeric forms of activated protective antigen (PA). LF⅐PA complexes are then trafficked to acidified endosomes, where PA forms heptameric pores in the bounding membrane and LF translocates through these pores to the cytosol. We used enhanced peptide amide hydrogen/deuterium exchange mass spectrometry and directed mutagenesis to define the surface on LF N that interacts with PA. A continuous surface encompassing one face of LF N became protected from deuterium exchange when LF N was bound to a PA dimer. Directed mutational analysis demonstrated that residues within this surface on LF N interact with Lys-197 on two PA subunits simultaneously, thereby showing that LF N spans the PA subunit:subunit interface and explaining why heptameric PA binds a maximum of three LF N molecules. Our results elucidate the structural basis for anthrax lethal toxin assembly and may be useful in developing drugs to block toxin action.

Generation and screening of efficient neutralizing single domain antibodies (VHHs) against the critical functional domain of anthrax protective antigen (PA)

International journal of biological macromolecules, 2018

Since anthrax is an acute infectious disease, detection and neutralization of the toxins of pathogenic Bacillus anthracis are of great importance. The critical role of protective antigen (PA) component of tripartite anthrax toxin in toxin entry into the host cell cytosol provided a great deal of effort to generate monoclonal antibodies against this constitute. Regarding the importance of anthrax detection/neutralization and unique physicochemical and pharmacological features of VHHs as single domain antibodies, the present study aimed to generate VHHs against the receptor binding domain of PA, termed PAD4. After camel immunization, a gene repertoire of VHH fragments with a diversity of 4.7×108 clones was produced, followed by constructing a VHH phage display library. A stringent successive biopanning was then carried out to isolate the phages displaying high affinity VHHs against PAD4.Polyclonal and monoclonal Enzyme-linked immunosorbent assay (ELISA) verified binding specificity of...

Neutralization of the anthrax toxin by antibody-mediated stapling of its membrane-penetrating loop

Acta Crystallographica Section D Structural Biology, 2021

Anthrax infection is associated with severe illness and high mortality. Protective antigen (PA) is the central component of the anthrax toxin, which is one of two major virulence factors of Bacillus anthracis, the causative agent of anthrax disease. Upon endocytosis, PA opens a pore in the membranes of endosomes, through which the cytotoxic enzymes of the toxin are extruded. The PA pore is formed by a cooperative conformational change in which the membrane-penetrating loops of PA associate, forming a hydrophobic rim that pierces the membrane. Due to its crucial role in anthrax progression, PA is an important target for monoclonal antibody-based therapy. cAb29 is a highly effective neutralizing antibody against PA. Here, the cryo-EM structure of PA in complex with the Fab portion of cAb29 was determined. It was found that cAb29 neutralizes the toxin by clamping the membrane-penetrating loop of PA to the static surface-exposed loop of the D3 domain of the same subunit, thereby prevent...

A model of anthrax toxin lethal factor bound to protective antigen.

Anthrax toxin is made up of three proteins: the edema factor (EF), lethal factor (LF) enzymes, and the multifunctional protective antigen (PA). Proteolytically activated PA heptamerizes, binds the EF͞LF enzymes, and forms a pore that allows for EF͞LF passage into host cells. Using directed mutagenesis, we identified three LF-PA contact points defined by a specific disulfide crosslink and two pairs of complementary charge-reversal mutations. These contact points were consistent with the lowest energy LF-PA complex found by using Rosetta protein-protein docking. These results illustrate how biochemical and computational methods can be combined to produce reliable models of large complexes. The model shows that EF and LF bind through a highly electrostatic interface, with their flexible N-terminal region positioned at the entrance of the heptameric PA pore and thus poised to initiate translocation in an N-to C-terminal direction.

Stability of domain 4 of the anthrax toxin protective antigen and the effect of the VWA domain of CMG2 on stability

Protein Science, 2017

The major immunogenic component of the current anthrax vaccine, anthrax vaccine adsorbed (AVA) is protective antigen (PA). We have shown recently that the thermodynamic stability of PA can be significantly improved by binding to the Von-Willebrand factor A (VWA) domain of capillary morphogenesis protein 2 (CMG2), and improvements in thermodynamic stability may improve storage and long-term stability of PA for use as a vaccine. In order to understand the origin of this increase in stability, we have isolated the receptor binding domain of PA, domain 4 (D4), and have studied the effect of the addition of CMG2 on thermodynamic stability. We are able to determine a binding affinity between D4 and CMG2 (~300 nM), which is significantly weaker than that between full-length PA and CMG2 (170-300 pM). Unlike full-length PA, we observe very little change in stability of D4 on binding to CMG2, using either fluorescence or 19 F-NMR experiments. Because in previous experiments we could observe a stabilization of both domain 4 and domain 2, the mechanism of stabilization of PA by CMG2 is likely to involve a mutual stabilization of these two domains.