Efficacy of a Binuclear Cyclopalladated Compound Therapy for cutaneous leishmaniasis in the murine model of infection with Leishmania amazonensis and its inhibitory effect on Topoisomerase 1B (original) (raw)

2012 - In Vitro and In Vivo Activity of a Palladacycle Complex on Leishmania (Leishmania) amazonensis

PLoS Neglected Tropical Diseases, 2012

Background: Antitumor cyclopalladated complexes with low toxicity to laboratory animals have shown leishmanicidal effect. These findings stimulated us to test the leishmanicidal property of one palladacycle compound called DPPE 1.2 on Leishmania (Leishmania) amazonensis, an agent of simple and diffuse forms of cutaneous leishmaniasis in the Amazon region, Brazil. Methodology/Principal Findings: Promastigotes of L. (L.) amazonensis and infected bone marrow-derived macrophages were treated with different concentrations of DPPE 1.2. In in vivo assays foot lesions of L. (L.) amazonensis-infected BALB/c mice were injected subcutaneously with DPPE 1.2 and control animals received either Glucantime or PBS. The effect of DPPE 1.2 on cathepsin B activity of L. (L.) amazonensis amastigotes was assayed spectrofluorometrically by use of fluorogenic substrates. The main findings were: 1) axenic L. (L.) amazonensis promastigotes were destroyed by nanomolar concentrations of DPPE 1.2 (IC50 = 2.13 nM); 2) intracellular parasites were killed by DPPE 1.2 (IC50 = 128.35 nM), and the drug displayed 10-fold less toxicity to macrophages (CC50 = 1,267 nM); 3) one month after intralesional injection of DPPE 1.2 infected BALB/c mice showed a significant decrease of foot lesion size and a reduction of 97% of parasite burdens when compared to controls that received PBS; 4) DPPE 1.2 inhibited the cysteine protease activity of L. (L.) amazonensis amastigotes and more significantly the cathepsin B activity.

In Vitro and In Vivo Activity of a Palladacycle Complex on Leishmania (Leishmania) amazonensis

PLOS Neglected Tropical Diseases, 2012

BackgroundAntitumor cyclopalladated complexes with low toxicity to laboratory animals have shown leishmanicidal effect. These findings stimulated us to test the leishmanicidal property of one palladacycle compound called DPPE 1.2 on Leishmania (Leishmania) amazonensis, an agent of simple and diffuse forms of cutaneous leishmaniasis in the Amazon region, Brazil.Methodology/Principal FindingsPromastigotes of L. (L.) amazonensis and infected bone marrow-derived macrophages were treated

Leishmania donovani: Differential activities of classical topoisomerase inhibitors and antileishmanials against parasite and host cells at the level of DNA topoisomerase I and in cytotoxicity assays

Experimental Parasitology, 2006

DiVerent classes of topoisomerase (TOP) inhibitors and antitrypanosomatid agents exhibited variable eYcacies against Leishmania donovani parasites and human mononuclear cells both at the level of DNA topoisomerase I (TOPI) catalytic activity and in cytotoxicity assays. Bis-benzimidazoles and the diamidine diminazene aceturate exhibited uniformly high eYcacies against parasite and host enzymes as well as against parasite and mononuclear cells, but pentamidine showed around 2 orders of magnitude greater speciWcity for Leishmania TOPI and amastigote cells (P < 0.05). The protoberberine coralyne and the Xavonoid quercetin were highly potent, but non-selective, inhibitors in vitro, although the latter showed slight selectivity for parasite TOPI. Camptothecin was selective for mononuclear cells at both levels (P < 0.05) and sodium stibogluconate was selective only at the enzyme level displaying 30-fold greater potency against parasite TOPI (P < 0.05). These data suggest that at least part of pentamidines' leishmanicidal activity may be mediated through TOPI inhibition, and support the feasibility of exploiting diVerences between Leishmania and human TOPs to develop modiWed compounds with improved selectivity. 

Cytotoxicity of acridine compounds for Leishmania promastigotes in vitro

1992

The effect of mammalian and bacterial topoisomerase H inhibitors on Leishmania promastigotes was studied in vitro. Parasites were incubated with drugs, and cytotoxicity was assessed on the basis of the loss of flagellar motility and cell lysis after 48 h. 9-Aminoacridines, which are structurally related to the known antileishmanial compounds quinacrine and chlorpromazine, showed activity against the parasite at concentrations in the range of 10 to 20,uM. Adriamycin showed far less activity, while etoposide and several quinolones were inactive at 100-,uM concentrations. These results demonstrate that a particular structural class of compounds is cytotoxic to Leishmania species. The unique structure-activity relationship discovered suggests that leishmanial topoisomerase II could be a useful target for chemotherapy. Leishmaniasis has traditionally been treated with pentava-lent antimonial agents (10). These drugs must be given parenterally over prolonged periods of time, are expensive...

Some novel antileishmanial compounds inhibit normal cell cycle progression of Leishmania donovani promastigotes and exhibits pro-oxidative potential

Some novel antileishmanial compounds inhibit normal cell cycle progression of Leishmania donovani promastigotes and exhibits pro-oxidative potential, 2021

In the midst of numerous setbacks that beclouds the fight against leishmaniasis; a neglected tropical disease, the search for new chemotherapeutics against this disease is of utmost importance. Leishmaniasis is a disease closely associated with poverty and endemic in Africa, Asia, southern Europe and the Americas. It is caused by parasites of the genus Leishmania and transmitted by a sandfly vector. In this study, we evaluated the antileishmanial potency of eighteen pathogen box compounds and elucidated their biosafety and possible mechanisms of action against Leishmania donovani promastigotes and amastigotes in vitro. IC 50 s range of 0.12±0.15 to >6.25 μg/ml and 0.13±0.004 to >6.25μg/ml were observed for the promastigotes and amastigotes, respectively. We demonstrated the ability of some of the compounds to cause cytocidal effect on the parasites, induce increased production of reactive oxygen species (ROS), disrupt the normal parasite morphology and cause the accumulation of parasites at the DNA synthesis phase of the cell cycle. We recommend a further in vivo study on these compounds to validate the findings.

Anti-leishmanial activity of disubstituted purines and related pyrazolo[4,3-d]pyrimidines

Bioorganic & Medicinal Chemistry Letters, 2011

We report here results of screening directed to finding new anti-leishmanial drugs among 2,6-disubstituted purines and corresponding 3,7-disubstituted pyrazolo [4,3-d]pyrimidines. These compounds have previously been shown to moderately inhibit human cyclin-dependent kinases. Since some compounds reduced viability of axenic amastigotes of Leishmania donovani, we screened them for interaction with recombinant leishmanial cdc-2 related protein kinase (CRK3/CYC6), an important cell cycle regulator of the parasitic protozoan. Eighteen pairs of corresponding isomers were tested for viability of amastigotes and for inhibition of CRK3/CYC6 kinase activity. Some compounds (9A, 12A and 13A) show activity against amastigotes with EC 50 in a range 1.5-12.4 lM. Structure-activity relationships for the tested compounds are discussed and related to the lipophilicity of the compounds.

Chemotherapy of Leishmaniasis: Past, Present and Future

Current Medicinal Chemistry, 2007

Leishmaniasis is a parasitic disease caused by hemoflagellate, Leishmania spp. The parasite is transmitted through the bites of an infected female phlebotomine sandfly. Leishmaniasis is prevalent throughout the world and in at least 88 countries. For its treatment, nearly 25 compounds are reported to have anti-leishmanial effects but not all are in use. Pentavalent antimony compounds had remained mainstay for nearly 75 years. However, emergence of resistance to this drug, led to the use of other compounds such as -Amphotericin B, Pentamidine, Paromomycin, Allopurinol etc. Amphotericin B, an antifungal macrolide polyene is characterized by the hydrophilic polyhydroxyl and hydrophobic polyene faces on it long axis which acts on membrane sterols resulting in parasite cell lysis. Presently, it is the only drug with highest cure rate. Other anti-fungals like ketoconazole, fluconazole and terbinafine are found less effective. Recently, anticancer alkylphosphocholines have been found to be the most effective oral compounds. These act as membrane synthetic ether-lipid analogues, and consist of alkyl chains in the lipid portions. Most promising of these are miltefosine (hexadecylphosphocholine), Edelfosine (ET-18-OCH 3 ) and Ilmofosine (BM 41.440). However, the recent focus has been on identifying newer therapeutic targets in the parasite such as DNA topoisomerases. The present review describes the current understanding of different drugs against leishmaniasis, their chemistry, mode of action and the mechanism of resistance in the parasite. Future perspectives in the area of new anti-leishmanial drug targets are also enumerated. However, due to the vastness of the topic main emphasis is given on visceral leishmaniasis.

Leishmanicidal and Immunomodulatory Activities of the Palladacycle Complex DPPE 1.1, a Potential Candidate for Treatment of Cutaneous Leishmaniasis

Frontiers in microbiology, 2018

The present study focused on the activity of the palladacycle complex DPPE 1.1 on . Promastigotes of were destroyed by nanomolar concentrations of DPPE 1.1, whereas intracellular amastigotes were killed at drug concentrations fivefold less toxic than those harmful to macrophages. -infected BALB/c mice were treated by intralesional injection of DPPE 1.1. Animals treated with 3.5 and 7.0 mg/kg of DPPE 1.1 showed a significant decrease of foot lesion sizes and a parasite load reduction of 93 and 99%, respectively, when compared to untreated controls. Furthermore, DPPE 1.1 was non-toxic to treated animals. The cathepsin B activity of amastigotes was inhibited by DPPE 1.1 as demonstrated spectrofluorometrically by use of a specific fluorogenic substrate. Analysis of T-cells populations in mice treated with DPPE 1.1 and untreated controls was performed by fluorescence-activated cell sorter (FACS). IFN-γ was measured in supernatants of lymphocytes from popliteal and inguinal lymph nodes is...

Elucidating the possible mechanism of action of some pathogen box compounds against Leishmania donovani

PLOS Neglected Tropical Diseases, 2020

Leishmaniasis is one of the Neglected Tropical Diseases (NTDs) which is closely associated with poverty and has gained much relevance recently due to its opportunistic coinfection with HIV. It is a protozoan zoonotic disease transmitted by a dipteran Phlebotomus, Lutzomyia/ Sergentomyia sandfly; during blood meals on its vertebrate intermediate hosts. It is a four-faceted disease with its visceral form being more deadly if left untreated. It is endemic across the tropics and subtropical regions of the world. It can be considered the third most important NTD after malaria and lymphatic filariasis. Currently, there are numerous drawbacks on the fight against leishmaniasis which includes: non-availability of vaccines, limited availability of drugs, high cost of mainstay drugs and parasite resistance to current treatments. In this study, we screened the antileishmanial activity, selectivity, morphological alterations, cell cycle progression and apoptotic potentials of six Pathogen box compounds from Medicine for Malaria Venture (MMV) against Leishmania donovani promastigotes and amastigotes. From this study, five of the compounds showed great promise as lead chemotherapeutics based on their high selectivity against the Leishmania donovani parasite when tested against the murine mammalian macrophage RAW 264.7 cell line (with a therapeutic index ranging between 19-914 (promastigotes) and 1-453 (amastigotes)). The cell cycle progression showed growth arrest at the G0-G1 phase of mitotic division, with an indication of apoptosis induced by two (2) of the pathogen box compounds tested. Our findings present useful information on the therapeutic potential of these compounds in leishmaniasis. We recommend further in vivo studies on these compounds to substantiate observations made in the in vitro study.