An interpolation theorem between Calderón-Hardy spaces (original) (raw)
2017, Revista De La Union Matematica Argentina
Abstract
We obtain a complex interpolation theorem between weighted Calderon-Hardy spaces for weights in a Sawyer class. The technique used is based on the method obtained by J.-O. Stromberg and A. Torchinsky; however, we must overcome several technical difficulties associated with considering one-sided Calderon-Hardy spaces. Interpolation results of this type are useful in the study of weighted weak type inequalities of strongly singular integral operators.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (19)
- A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113-190. MR 0167830.
- A. P. Calderón, Estimates for singular integral operators in terms of maximal functions, Studia Math. 44 (1972), 563-582. MR 0348555.
- A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribu- tion, Advances in Math. 16 (1975), 1-64. MR 0417687.
- A. P. Calderón and A. Torchinsky, Parabolic maximal functions associated with a distribu- tion, II, Advances in Math. 24 (1977), 101-171. MR 0450888.
- S. Chanillo, Weighted norm inequalities for strongly singular convolution operators, Trans. Amer. Soc. 281 (1984), 77-107. MR 0719660.
- A. Gatto, C. Segovia and J. R. Jiménez, On the solution of the equation ∆ m F = f for f ∈ H p , Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), 394-415, Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983. MR 730081.
- L. Grafakos, Classical and modern Fourier analysis, Pearson Education, Upper Saddle River, NJ, 2004. MR 2449250.
- F. J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 (1993), 691-698. MR 1111435.
- F. J. Martín-Reyes, L. Pick and A. de la Torre, A + ∞ condition, Canad. J. Math. 45 (1993), 1231-1244. MR 1247544.
- F. J. Martín-Reyes, P. Ortega Salvador and A. de la Torre, Weighted inequalities for one- sided maximal functions, Trans. Amer. Math. Soc. 319 (1990), 517-534. MR 0986694.
- S. Ombrosi, On spaces associated with primitives of distributions in one-sided Hardy spaces, Rev. Un. Mat. Argentina 42 (2001), 81-102. MR 1969626.
- S. Ombrosi, Sobre espacios asociados a primitivas de distribuciones en espacios de Hardy laterales, Ph.D. thesis, Universidad Buenos Aires, 2002.
- S. Ombrosi and C. Segovia, One-sided singular integral operators on Calderón-Hardy spaces, Rev. Un. Mat. Argentina 44 (2003), 17-32. MR 2051035.
- S. Ombrosi, C. Segovia and R. Testoni, An interpolation theorem between one-sided Hardy spaces, Ark. Mat. 44 (2006), 335-348. MR 2292726.
- L. de Rosa and C. Segovia, Weighted H p spaces for one sided maximal functions, Harmonic analysis and operator theory (Caracas, 1994), 161-183, Contemp. Math., 189, Amer. Math. Soc., Providence, RI, 1995. MR 1347012.
- E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61. MR 0849466.
- E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, NJ, 1970. MR 0290095.
- J.-O. Strömberg and A. Torchinsky, Weighted Hardy spaces, Lectures Notes in Mathematics 1381, Springer-Verlag, Berlin, 1989. MR 1011673.
- A. Zygmund, Trigonometric Series, Vol. 2, Cambridge University Press, 1959. MR 0107776. Rev. Un. Mat. Argentina, Vol. 58, No. 1 (2017)