Functional integration and individuality in prokaryotic collective organisations (original) (raw)

Emergence of cooperativity in a model biofilm

Journal of Physics D: Applied Physics, 2017

Evolution to multicellularity from an aggregate of cells involves altruistic cooperation between individual cells, which is in conflict with Darwinian evolution. How cooperation arises and how a cell community resolves such conflicts remain unclear. In this study, we investigated the spontaneous emergence of cell differentiation and subsequent division of labour in evolving cellular metabolic networks. In spatially extended cell aggregates, our findings reveal that resource limitation can lead to the formation of subpopulations and cooperation of cells, and hence multicellular communities. A specific example of our model can explain the recently observed oscillatory growth in Bacillus subtilis biofilms.

The Evolution of Microbial Facilitation: Sociogenesis, Symbiogenesis, and Transition in Individuality

Frontiers in Ecology and Evolution

Metabolic cooperation is widespread, and it seems to be a ubiquitous and easily evolvable interaction in the microbial domain. Mutual metabolic cooperation, like syntrophy, is thought to have a crucial role in stabilizing interactions and communities, for example biofilms. Furthermore, cooperation is expected to feed back positively to the community under higher-level selection. In certain cases, cooperation can lead to a transition in individuality, when freely reproducing, unrelated entities (genes, microbes, etc.) irreversibly integrate to form a new evolutionary unit. The textbook example is endosymbiosis, prevalent among eukaryotes but virtually lacking among prokaryotes. Concerning the ubiquity of syntrophic microbial communities, it is intriguing why evolution has not lead to more transitions in individuality in the microbial domain. We set out to distinguish syntrophy-specific aspects of major transitions, to investigate why a transition in individuality within a syntrophic ...

Micro-scale intermixing: a requisite for stable and synergistic co-establishment in a four-species biofilm

The ISME journal, 2018

Microorganisms frequently coexist in complex multispecies communities, where they distribute non-randomly, reflective of the social interactions that occur. It is therefore important to understand how social interactions and local spatial organization influences multispecies biofilm succession. Here the localization of species pairs was analyzed in three dimensions in a reproducible four-species biofilm model, to study the impact of spatial positioning of individual species on the temporal development of the community. We found, that as the biofilms developed, species pairs exhibited distinct intermixing patterns unique to the four-member biofilms. Higher biomass and more intermixing were found in four-species biofilms compared to biofilms with fewer species. Intriguingly, in local regions within the four member biofilms where Microbacterium oxydans was scant, both biomass and intermixing of all species were lowered, compared to regions where M. oxydans was present at typical densit...

Transition of a solitary to a biofilm community life style in bacteria: a survival strategy with division of labour

The International Journal of Developmental Biology, 2020

Multicellularity is associated with higher eukaryotes having an organized division of labour and a coordinated action of different organs composed of multiple cell types. This division of different cell types and organizations to form a multicellular structure by developmental programming is a key to the multitasking of complex traits that enable higher eukaryotes to cope with fluctuating environmental conditions. Microbes such as bacteria, on the other hand, are unicellular and have flourished in diverse environmental conditions for a much longer time than eukaryotes in evolutionary history. In this review, we will focus on different strategies and functions exhibited by microbes that enable them to adapt to changes in lifestyle associated with transitioning from a unicellular solitary state to a complex community architecture known as a biofilm. We will also discuss various environmental stimuli and signaling processes which bacteria utilize to coordinate their social traits and e...

Viewing Biofilms within the Larger Context of Bacterial Aggregations

Microbial Biofilms - Importance and Applications, 2016

The 'Microbial Cities' vision of bacterial biofilms has dominated our understanding of the development and functioning of bacterial aggregations for the past 20 years, during which active sludge, clumps, colonies, flocs, mats, pellicles, rafts, slimes, zooglea, etc. have been largely forgotten or ignored. Although the medically inspired developmental model of human pathogen biofilms has merits including providing a rationale for the development of anti-biofilm therapeutics, it fails to provide links to other types of bacterial aggregation that are commonly found in a wide range of natural and manmade environments. Possibly as a result, applied and environmental microbiologists tend to avoid the term 'biofilm' and use others such as 'microbial mats' instead. Here we challenge the simplistic planktonic (independent and free-swimming bacteria)biofilm (sessile and cooperative bacteria) dichotomy, and consider biofilms within the larger context of bacterial aggregations. By placing biofilms into context, which we see as a continuum of aggregations or communities with varying abiotic and biotic properties, fundamental physical, biological, and evolutionary ecological processes that effect community development and function can no longer be considered unique to biofilms, but may also be important in other aggregations that develop over time and change in nature depending on prevailing conditions. By doing this, we will be better able to distinguish those processes which govern bacterial colonisation and ecological success in a wider sense from those that are unique to particular environments and specialised strategies.

Control of cell fate by the formation of an architecturally complex bacterial community

Genes & Development, 2008

Here we demonstrate cellular differentiation within biofilms of the spore-forming bacterium Bacillus subtilis, and present evidence that formation of the biofilm governs differentiation. We show that motile, matrix-producing, and sporulating cells localize to distinct regions within the biofilm, and that the localization and percentage of each cell type is dynamic throughout development of the community. Importantly, mutants that do not produce extracellular matrix form unstructured biofilms that are deficient in sporulation. We propose that sporulation is a culminating feature of biofilm formation, and that spore formation is coupled to the formation of an architecturally complex community of cells.

Biological Individuality: the case of biofilms

Biology & Philosophy, 2013

This paper examines David Hull’s and Peter Godfrey-Smith’s accounts of biological individuality using the case of biofilms. Biofilms fail standard criteria for individuality, such as having reproductive bottlenecks and forming parent-offspring lineages. Nevertheless, biofilms are good candidates for individuals. The nature of biofilms shows that Godfrey-Smith’s account of individuality, with its reliance on reproduction, is too restrictive. Hull’s interactor notion of individuality better captures biofilms, and we argue that it offers a better account of biological individuality. However, Hull’s notion of interactor needs more precision. We suggest some ways to make Hull’s notion of interactor and his account of individuality more precise. Generally, we maintain that biofilms are a good test case for theories of individuality, and a careful examination of biofilms furthers our understanding of biological individuality.