Function dictates the phase dependence of vision during human locomotion. (original) (raw)

In human and animal locomotion, sensory input is thought to be processed in a phase dependent manner. Here we use full-field transient visual scene motion towards or away from subjects walking on a treadmill. Perturbations were presented at three phases of walking to test 1) whether phase dependence is observed for visual input, and 2) if the nature of phase dependence differs across body segments. Results demonstrated that trunk responses to approaching perturbations were only weakly phase dependent and instead depended primarily on the delay from the perturbation. Recording of kinematic and muscle responses from both right and left lower limb allowed the analysis of 6 distinct phases of perturbation effects. In contrast to the trunk, leg responses were strongly phase dependent. Leg responses during the same gait cycle as the perturbation exhibited gating, occurring only when perturbations were applied in mid stance. In contrast, during the post-perturbation gait cycle, leg responses occurred at similar response phases of the gait cycle over a range of perturbation phases. These distinct responses reflect modulation of trunk orientation for upright equilibrium and modulation of leg segments for both hazard accommodation/avoidance and positional maintenance on the treadmill. Overall, these results support the idea that the phase dependence of responses to visual scene motion is determined by different functional tasks during walking.

The onset time of balance control during walking is phase-independent, but the magnitude of the response is not

2019

The human body is mechanically unstable during walking. Maintaining upright stability requires constant regulation of muscle force by the central nervous system to push against the ground and move the body mass in the desired way. Activation of muscles in the lower body in response to sensory or mechanical perturbations during walking is usually highly phase-dependent, because the effect any specific muscle force has on the body movement depends upon the body configuration. Yet the resulting movement patterns of the upper body after the same perturbations are largely phase-independent. This is puzzling, because any change of upper-body movement must be generated by parts of the lower body pushing against the ground. How do phase-dependent muscle activation patterns along the lower body generate phase-independent movement patterns of the upper body? We hypothesize that in response to a perceived threat to balance, the nervous system generates a functional response by pushing against ...

The many roles of vision during walking

Experimental Brain Research, 2010

Vision can improve bipedal upright stability during standing and locomotion. However, during locomotion, vision supports additional behaviors such as gait cycle modulation, navigation, and obstacle avoidance. Here, we investigate how the multiple roles of vision are reflected in the dynamics of trunk control as the neural control problem changes from a fixed to a moving base of support. Subjects were presented with either low- or high-amplitude broadband visual stimuli during standing posture or while walking on a treadmill at 1 km/h and 5 km/h. Frequency response functions between visual scene motion (input) and trunk kinematics (output) revealed little or no change in the gain of trunk orientation in the standing posture and walking conditions. However, a dramatic increase in gain was observed in trunk (hip and shoulder) horizontal displacement from posture to locomotion. Such increases in gain may be interpreted as an increased coupling to visual scene motion. However, we believe that the increased gain reflects a decrease in stability due to a change of the control problem from standing to locomotion. Indeed, keeping the body upright with the use of vision during walking is complicated by the additional locomotor processes at work. Unlike during standing, vision plays many roles during locomotion, providing information for upright stability as well as body position relative to the external environment.

The biomechanics of walking shape the use of visual information during locomotion over complex terrain

The aim of this study was to examine how visual information is used to control stepping during locomotion over terrain that demands precision in the placement of the feet. More specifically, we sought to determine the point in the gait cycle at which visual information about a target is no longer needed to guide accurate foot placement. Subjects walked along a path while stepping as accurately as possible on a series of small, irregularly spaced target footholds. In various conditions, each of the targets became invisible either during the step to the target or during the step to the previous target. We found that making targets invisible after toe off of the step to the target had little to no effect on stepping accuracy. However, when targets disappeared during the step to the previous target, foot placement became less accurate and more variable. The findings suggest that visual information about a target is used prior to initiation of the step to that target but is not needed to continuously guide the foot throughout the swing phase. We propose that this style of control is rooted in the biomechanics of walking, which facilitates an energetically efficient strategy in which visual information is primarily used to initialize the mechanical state of the body leading into a ballistic movement toward the target foothold. Taken together with previous studies, the findings suggest the availability of visual information about the terrain near a particular step is most essential during the latter half of the preceding step, which constitutes a critical control phase in the bipedal gait cycle.

Visual control of trunk translation and orientation during locomotion

Experimental brain research, 2014

Previous studies have suggested distinct control of gait characteristics in the anterior–posterior (AP) and medial–lateral (ML) directions in response to visual input. Responses were larger to a ML visual stimulus, suggesting that vision plays a larger role in stabilizing gait in the ML direction. Here, we investigated responses of the trunk during locomotion to determine whether a similar direction dependence is observed. We hypothesized that translation of the trunk would show a similar ML dependence on vision, but that angular deviations of the trunk would show equivalent responses in all directions. Subjects stood or walked on a treadmill at 5 km/h while viewing a virtual wall of white triangles that moved in either the AP or ML direction according to a broadband input stimulus. Frequency response functions between the visual scene motion and trunk kinematics revealed that trunk translation gain was larger across all frequencies during walking compared with standing. Trunk orientation responses were not different from standing at very low frequencies; however, at high frequencies, trunk orientation gain was much higher during walking. Larger gains in response to ML visual scene motion were found for all trunk movements. Higher gains in the ML direction while walking suggest that visual feedback may contribute more to the stability of trunk movements in the ML direction. Vision modified trunk movement behavior on both a slow (translation) and fast (orientation) time scale suggesting a priority for minimizing angular deviations of the trunk. Overall, trunk responses to visual input were consistent with the theme that control of locomotion requires higher-level sensory input to maintain stability in the ML direction.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.