Control of peak pressures of an HCCI engine under varying swirl and operating parameters (original) (raw)
Frontiers in Energy, 2016
Abstract
The major advantages of homogeneous charge compression ignition (HCCI) are high efficiency in combination with low NO x -emissions. However, one of the major challenges with HCCI is the control of higher peak pressures which may damage the engine, limiting the HCCI engine life period. In this paper, an attempt is made to analyze computationally the effect of induction swirl in controlling the peak pressures of an HCCI engine under various operating parameters. A single cylinder 1.6 L reentrant piston bowl diesel engine is chosen. For computational analysis, the ECFM-3Z model of STAR–CD is considered because it is suitable for analyzing the combustion processes in SI and CI engines. As an HCCI engine is a hybrid version of SI and CI engines, the ECFM- 3Z model with necessary modifications is used to analyze the peak pressures inside the combustion chamber. The ECFM-3Z model for HCCI mode of combustion is validated with the existing literature to make sure that the results obtained are accurate. Numerical experiments are performed to study the effect of varying properties like speed of the engine, piston bowl geometry, exhaust gas recirculation (EGR) and equivalence ratio under different swirl ratios in controlling the peak pressures inside the combustion chamber. The results show that the swirl ratio has a considerable impact on controlling the peak pressures of HCCI engine. A reduction in peak pressures are observed with a swirl ratio of 4 because of reduced in cylinder temperatures. The combined effect of four operating parameters, i.e., the speed of the engine, piston bowl geometry, EGR, and equivalence ratio with swirl ratios suggest that lower intake temperatures, reentrant piston bowl, higher engine speeds and higher swirl ratios are favorable in controlling the peak pressures.
Madhu Murthy K hasn't uploaded this paper.
Let Madhu Murthy know you want this paper to be uploaded.
Ask for this paper to be uploaded.