DNA-Repair Defects and Olaparib in Metastatic Prostate Cancer (original) (raw)

Defective DNA repair mechanisms in prostate cancer: impact of olaparib

Drug Design, Development and Therapy, 2017

The field of prostate oncology has continued to change dramatically. It has truly become a field that is intensely linked to molecular genetic alterations, especially DNA-repair defects. Germline breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2) mutations are implicated in the highest risk of prostate cancer (PC) predisposition and aggressiveness. Poly adenosine diphosphate ribose polymerase (PARP) proteins play a key role in DNA repair mechanisms and represent a valid target for new therapies. Olaparib is an oral PARP inhibitor that blocks DNA repair pathway and coupled with BRCA mutated-disease results in tumor cell death. In phase II clinical trials, including patients with advanced castration-resistant PC, olaparib seems to be efficacious and well tolerated. Waiting for randomized phase III trials, olaparib should be considered as a promising treatment option for PC.

Olaparib for Metastatic Castration-Resistant Prostate Cancer

New England Journal of Medicine, 2020

BACKGROUND Multiple loss-of-function alterations in genes that are involved in DNA repair, including homologous recombination repair, are associated with response to poly(adenosine diphosphate-ribose) polymerase (PARP) inhibition in patients with prostate and other cancers.

Circulating Free DNA to Guide Prostate Cancer Treatment with PARP Inhibition

Cancer discovery, 2017

Biomarkers for a more precise patient care are needed in metastatic prostate cancer (mPC). We have reported a Phase II trial (TOPARP-A) of the poly(ADP)-ribose polymerase (PARP) inhibitor olaparib in mPC, demonstrating antitumor activity associating with homologous recombination DNA repair defects. We now report targeted and whole exome sequencing of serial circulating-free DNA (cfDNA) samples collected during this trial. Decreases in cfDNA concentration independently associated with outcome in multivariable analyses (HR for overall survival at week 8: 0.19; 95%CI 0.06-0.56 p=0.003). All tumor tissue somatic DNA repair mutations were detectable in cfDNA; allele frequency of somatic mutations decreased selectively in responding patients (Chi-squared p<0.001). At disease progression, following response to olaparib, multiple sub-clonal aberrations reverting germline and somatic DNA repair mutations (BRCA2, PALB2) back in frame emerged as mechanisms of resistance. These data support ...

Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): a multicentre, open-label, randomised, phase 2 trial

The Lancet Oncology

Background Metastatic castration-resistant prostate cancer is enriched in DNA damage response (DDR) gene aberrations. The TOPARP-B trial aims to prospectively validate the association between DDR gene aberrations and response to olaparib in metastatic castration-resistant prostate cancer. Methods In this open-label, investigator-initiated, randomised phase 2 trial following a selection (or pick-thewinner) design, we recruited participants from 17 UK hospitals. Men aged 18 years or older with progressing metastatic castration-resistant prostate cancer previously treated with one or two taxane chemotherapy regimens and with an Eastern Cooperative Oncology Group performance status of 2 or less had tumour biopsies tested with targeted sequencing. Patients with DDR gene aberrations were randomly assigned (1:1) by a computer-generated minimisation method, with balancing for circulating tumour cell count at screening, to receive 400 mg or 300 mg olaparib twice daily, given continuously in 4-week cycles until disease progression or unacceptable toxicity. Neither participants nor investigators were masked to dose allocation. The primary endpoint of confirmed response was defined as a composite of all patients presenting with any of the following outcomes: radiological objective response (as assessed by Response Evaluation Criteria in Solid Tumors 1.1), a decrease in prostate-specific antigen (PSA) of 50% or more (PSA50) from baseline, or conversion of circulating tumour cell count (from ≥5 cells per 7•5 mL blood at baseline to <5 cells per 7•5 mL blood). A confirmed response in a consecutive assessment after at least 4 weeks was required for each component. The primary analysis was done in the evaluable population. If at least 19 (43%) of 44 evaluable patients in a dose cohort responded, then the dose cohort would be considered successful. Safety was assessed in all patients who received at least one dose of olaparib. This trial is registered at ClinicalTrials.gov, NCT01682772. Recruitment for the trial has completed and follow-up is ongoing. Findings 711 patients consented for targeted screening between April 1, 2015, and Aug 30, 2018. 161 patients had DDR gene aberrations, 98 of whom were randomly assigned and treated (49 patients for each olaparib dose), with 92 evaluable for the primary endpoint (46 patients for each olaparib dose). Median follow-up was 24•8 months (IQR 16•7-35•9). Confirmed composite response was achieved in 25 (54•3%; 95% CI 39•0-69•1) of 46 evaluable patients in the 400 mg cohort, and 18 (39•1%; 25•1-54•6) of 46 evaluable patients in the 300 mg cohort. Radiological response was achieved in eight (24•2%; 11•1-42•3) of 33 evaluable patients in the 400 mg cohort and six (16•2%; 6•2-32•0) of 37 in the 300 mg cohort; PSA50 response was achieved in 17 (37•0%; 23•2-52•5) of 46 and 13 (30•2%; 17•2-46•1) of 43; and circulating tumour cell count conversion was achieved in 15 (53•6%; 33•9-72•5) of 28 and 13 (48•1%; 28•7-68•1) of 27. The most common grade 3-4 adverse event in both cohorts was anaemia (15 [31%] of 49 patients in the 300 mg cohort and 18 [37%] of 49 in the 400 mg cohort). 19 serious adverse reactions were reported in 13 patients. One death possibly related to treatment (myocardial infarction) occurred after 11 days of treatment in the 300 mg cohort. Interpretation Olaparib has antitumour activity against metastatic castration-resistant prostate cancer with DDR gene aberrations, supporting the implementation of genomic stratification of metastatic castration-resistant prostate cancer in clinical practice.

Clinical Utility of Olaparib in the Treatment of Metastatic Castration-Resistant Prostate Cancer: A Review of Current Evidence and Patient Selection

OncoTargets and Therapy, 2021

Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive and fatal disease with a median survival of 36 months. With the advent of genetic sequencing to identify individual genomic profiles and acquired tumor-specific pathways, targeted therapies have revolutionized cancer treatment, including the treatment strategy in mCRPC. Poly(adenosine 5ʹdiphosphate) ribose polymerase inhibitors (PARPi) are oral drugs that target mutations in the homologous recombination repair (HRR) pathway, which are found in approximately 27% of prostate cancer patients. In May 2020, the first PARP inhibitor, olaparib, was approved by the US Food and Drug Administration for men with mCRPC with HHR gene mutations based on the findings of the Phase III PROfound trial that showed improved overall survival in men with mCRPC who received olaparib and whose disease had progressed on a novel hormonal agent. This review summarizes the current evidence and clinical utility of olaparib as treatment in men with mCRPC. We describe the mechanism of action of PARPi, key clinical trials of olaparib in men with mCRPC, and ongoing Phase II and III clinical trials investigating olaparib in combination therapy and as front-line therapy in mCRPC.

Prostate cancer and PARP inhibitors: progress and challenges

Journal of Hematology & Oncology

Despite survival improvements achieved over the last two decades, prostate cancer remains lethal at the metastatic castration-resistant stage (mCRPC) and new therapeutic approaches are needed. Germinal and/or somatic alterations of DNA-damage response pathway genes are found in a substantial number of patients with advanced prostate cancers, mainly of poor prognosis. Such alterations induce a dependency for single strand break reparation through the poly(adenosine diphosphate-ribose) polymerase (PARP) system, providing the rationale to develop PARP inhibitors. In solid tumors, the first demonstration of an improvement in overall survival was provided by olaparib in patients with mCRPC harboring homologous recombination repair deficiencies. Although this represents a major milestone, a number of issues relating to PARP inhibitors remain. This timely review synthesizes and discusses the rationale and development of PARP inhibitors, biomarker-based approaches associated and the future ...

Similar incidence of DNA damage response pathway alterations between clinically localized and metastatic prostate cancer

BMC Urology

Background: In this era of precision medicine, the DNA damage response (DDR) pathway has been shown to be a viable target of intervention in metastatic castration-resistant prostate cancer (CRPC) as approximately one-third of CRPC patients harbor DDR pathway mutations. To determine whether DDR pathway is a potential therapeutic target in localized disease, we analyzed The Cancer Genome Atlas (TCGA) in the present study. Methods: TCGA is a publically available cancer genome database that is sponsored by the United States National Cancer Institute. Total of 455 cases were available in the database at the time of this analysis. Results: DDR pathway gene mutations or copy number alterations were present in 136 (29.9%) of the 455 cases. On a univariate analysis, DDR pathway status did not correlate with serum prostate specific antigen, tumor stage or grade. However, among patients with high-risk features post-operatively (pathologic stage ≥ T3, Gleason score ≥ 8, or PSA > 20 ng/ml), DDR pathway alteration was associated with a lower overall survival (p = 0.0291). Conclusions: Collectively these results suggest that DDR pathway alterations may also be significant in localized prostate cancer and agents such as PARP inhibitors should be considered in patients with a high-risk disease.

Identification of Novel Biomarkers of Homologous Recombination Defect in DNA Repair to Predict Sensitivity of Prostate Cancer Cells to PARP-Inhibitors

International Journal of Molecular Sciences, 2019

One of the most common malignancies in men is prostate cancer, for which androgen deprivation is the standard therapy. However, prostate cancer cells become insensitive to anti-androgen treatment and proceed to a castration-resistant state with limited therapeutic options. Therefore, besides the androgen deprivation approach, novel biomarkers are urgently required for specific targeting in this deadly disease. Recently, germline or somatic mutations in the homologous recombination (HR) DNA repair genes have been identified in at least 20–25% of metastatic castration-resistant prostate cancers (mCRPC). Defects in genes involved in HR DNA repair can sensitize cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors, a class of drugs already approved by the Food and Drug Administration (FDA) for breast and ovarian cancer carrying germline mutations in BRCA1/2 genes. For advanced prostate cancer carrying Breast cancer1/2 (BRCA1/2) or ataxia telengiectasia mutated (ATM) mutations, p...