Investigation of the antibacterial activity of a short cationic peptide against multidrug-resistant Klebsiella pneumoniae and Salmonella typhimurium strains and its cytotoxicity on eukaryotic cells (original) (raw)

The Pharmacophore of Short Cationic Antibacterial Peptides

Journal of Medicinal Chemistry, 2003

Cationic antibacterial peptides have been proclaimed as new drugs against multiresistant bacteria. Their limited success so far is partially due to the size of the peptides, which gives rise to unresolved issues regarding administration, bioavailability, metabolic stability, and immunogenicity. We have systematically investigated the minimum antibacterial motif of cationic antibacterial peptides regarding charge and lipophilicity/bulk and found that the pharmacophore was surprisingly small, opening the opportunity for development of short antibacterial peptides for systemic use.

Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria

Frontiers in Cell and Developmental Biology, 2016

Antimicrobial peptides (AMPs) have been proposed as a novel class of antimicrobials that could aid the fight against antibiotic resistant bacteria. The mode of action of AMPs as acting on the bacterial cytoplasmic membrane has often been presented as an enigma and there are doubts whether the membrane is the sole target of AMPs. Progress has been made in clarifying the possible targets of these peptides, which is reported in this review with as focus gram-positive vegetative cells and spores. Numerical estimates are discussed to evaluate the possibility that targets, other than the membrane, could play a role in susceptibility to AMPs. Concerns about possible resistance that bacteria might develop to AMPs are addressed. Proteomics, transcriptomics, and other molecular techniques are reviewed in the context of explaining the response of bacteria to the presence of AMPs and to predict what resistance strategies might be. Emergent mechanisms are cell envelope stress responses as well as enzymes able to degrade and/or specifically bind (and thus inactivate) AMPs. Further studies are needed to address the broadness of the AMP resistance and stress responses observed.

Antibacterial Activity of a Cationic Antimicrobial Peptide against Multidrug-Resistant Gram-Negative Clinical Isolates and Their Potential Molecular Targets

Molecules, 2020

Antimicrobial resistance reduces the efficacy of antibiotics. Infections caused by multidrug-resistant (MDR), Gram-negative bacterial strains, such as Klebsiella pneumoniae (MDRKp) and Pseudomonas aeruginosa (MDRPa), are a serious threat to global health. However, cationic antimicrobial peptides (CAMPs) are promising as an alternative therapeutic strategy against MDR strains. In this study, the inhibitory activity of a cationic peptide, derived from cecropin D-like (ΔM2), against MDRKp and MDRPa clinical isolates, and its interaction with membrane models and bacterial genomic DNA were evaluated. In vitro antibacterial activity was determined using the broth microdilution test, whereas interactions with lipids and DNA were studied by differential scanning calorimetry and electronic absorption, respectively. A strong bactericidal effect of ΔM2 against MDR strains, with minimal inhibitory concentration (MIC) and minimal bactericidal concentrations (MBC) between 4 and 16 μg/mL, was obse...