Comparative Cytotoxicity Study of Silver Nanoparticles (AgNPs) in a Variety of Rainbow Trout Cell Lines (RTL-W1, RTH-149, RTG-2) and Primary Hepatocytes (original) (raw)
Related papers
Aquatic Toxicology, 2011
The use of nanomaterials is rapidly increasing, while little is known about their possible ecotoxicological effects. This work investigates the toxic effects of silver (Ag) and gold (Au) nanoparticles on rainbow trout hepatocytes. In addition to toxicity assessment the particles were characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Hepatocyte primary cultures were exposed to Au and Ag nanoparticles, with and without dissolved organic carbon (DOC), as well as HAuCl 4 and AgNO 3 as ionic solutions at concentrations up to 17.4 mg/L and 19 mg/L, respectively. Ag and Au particles were within the small nanometer size range when dispersed in pure water. In media with higher ionic strength and DOC, particles tended to agglomerate. Cytotoxicity assessments showed that Ag nanoparticles caused a significant reduction in membrane integrity and cellular metabolic activity in a concentration-dependent manner. Au nanoparticles caused a threefold elevation of ROS levels, but no cytotoxicity occurred at concentrations tested. The addition of DOC did not alter the particles potency of cytotoxicity or ROS induction capacity. The current study shows that Ag and Au nanoparticles have adverse effects on rainbow trout hepatocytes at low mg/L concentrations.
Effects of silver and gold nanoparticles on rainbow trout ( Oncorhynchus mykiss) hepatocytes
Aquatic Toxicology, 2010
The use of nanomaterials is rapidly increasing, while little is known about their possible ecotoxicological effects. This work investigates the toxic effects of silver (Ag) and gold (Au) nanoparticles on rainbow trout hepatocytes. In addition to toxicity assessment the particles were characterized by transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). Hepatocyte primary cultures were exposed to Au and Ag nanoparticles, with and without dissolved organic carbon (DOC), as well as HAuCl 4 and AgNO 3 as ionic solutions at concentrations up to 17.4 mg/L and 19 mg/L, respectively. Ag and Au particles were within the small nanometer size range when dispersed in pure water. In media with higher ionic strength and DOC, particles tended to agglomerate. Cytotoxicity assessments showed that Ag nanoparticles caused a significant reduction in membrane integrity and cellular metabolic activity in a concentration-dependent manner. Au nanoparticles caused a threefold elevation of ROS levels, but no cytotoxicity occurred at concentrations tested. The addition of DOC did not alter the particles potency of cytotoxicity or ROS induction capacity. The current study shows that Ag and Au nanoparticles have adverse effects on rainbow trout hepatocytes at low mg/L concentrations.
Silver nanospheres are cytotoxic and genotoxic to fish cells
Aquatic Toxicology, 2010
Nanoparticles are being widely investigated for a range of applications due to their unique physical properties. For example, silver nanoparticles are used in commercial products for their antibacterial and antifungal properties. Some of these products are likely to result in silver nanoparticles reaching the aquatic environment. As such, nanoparticles pose a health concern for humans and aquatic species. We used a medaka (Oryzias latipes) cell line to investigate the cytotoxicity and genotoxicity of 30 nm diameter silver nanospheres. Treatments of 0.05, 0.3, 0.5, 3 and 5 g/cm 2 induced 80, 45.7, 24.3, 1 and 0.1% survival, respectively, in a colony forming assay. Silver nanoparticles also induced chromosomal aberrations and aneuploidy. Treatments of 0, 0.05, 0.1 and 0.3 g/cm 2 induced damage in 8, 10.8, 16 and 15.8% of metaphases and 10.8, 15.6, 24 and 24 total aberrations in 100 metaphases, respectively. These data show that silver nanoparticles are cytotoxic and genotoxic to fish cells.
European Journal of Experimental Biology, 2013
Despite increasing application of silver nanoparticles (NPs) in industry and consumer products, there is still little known about their potential toxicity, particularly to organisms in aquatic environments. Regarding fast development of the nanotechnology and its diverse applications, is very important having enough data on the probably its side effects on the aquatic body organs. Therefore, present investigations were taken on the effects of nanosilver administration on the liver's histology and biochemistry in rainbow trout. For this study, the silver nanoparticles were synthesized in a one-step reduction process in an aqueous solution. 60 O. mykiss were obtained from a local commercial hatchery. Fish were divided randomly into four groups. Experimental fish were exposed to concentration of 3, 300 and 1000 mg/L of nanosilver solution for eight weeks. At the end of experiments, blood samples were collected and biochemical analyses of sera were performed. Tissue samples were als...
Environmental Sciences Europe
Background Currently, nanotechnology and nanoparticles have quickly emerged and have gained the attention of scientists due to their massive applications in environmental sectors. However, these environmental applications of silver nanoparticles potentially cause serious effects on terrestrial and aquatic organisms. In the current study, freshwater fish C. carpio were exposed to blood-mediated silver nanoparticles for toxicity, mortality, bioaccumulation, and histological alterations. Silver nanoparticles were fabricated using animal blood serum and their toxic effect was studied against common carp fish at different concentrations levels (0.03, 0.06, and 0.09 mg/L). Results The findings have revealed a little influence of blood-induced silver nanoparticles on fish behavior at the highest concentration (0.09 mg/L). However, bioaccumulation of blood-mediated silver nanoparticles was reported in different organs of fish. Maximum bioaccumulation of silver nanoparticles was reported in ...
BackgroundCurrently, nanotechnology and nanoparticles have been quickly emerged and have gained the attention of scientists due to its massive applications in environmental sectors. However, these environmental applications of silver nanoparticles potentially cause serious effects on terrestrial and aquatic organisms. In the current study, freshwater fish C. carpio were exposed to blood mediated AgNPs for toxicity, mortality, bioaccumulation, and histological alterations. Silver nanoparticles were fabricated using animal blood serum and their toxic effect was studied against common carp fish at different concentrations level (0.03, 0.06, and 0.09 mg/L).ResultsThe findings have revealed a little effect of blood induced silver nanoparticles (B-AgNPs) on fish behavior at the highest concentration (0.09 mg/L). However, bioaccumulation of B-AgNPs was reported in different organs of fish. Maximum bioaccumulation of B-AgNPs was reported in the liver, followed by intestine, gills, and muscl...