Whole-Genome Sequences of Three Plant Growth-Promoting Rhizobacteria Isolated from Solanum tuberosum L. Rhizosphere in Tanzania (original) (raw)

Draft Genome Sequences of Three Rhizospheric Plant Growth-Promoting Bacteria

Microbiology Resource Announcements, 2019

Here, we report the draft genome sequences of Bacillus subtilis A1, Sphingobacterium sp. strain A3, and Pseudomonas sp. strain A29; Sphingobacterium sp. A3 and Pseudomonas sp. A29 were identified as Bacillus velezensis strain A3 and Bacillus subtilis strain A29, respectively, after a quality control check of the wholegenome sequences deposited in the NCBI database. These bacteria exhibit tremendous production of siderophores and significant antimicrobial potential. When inoculated on maize, these isolates increase its yield.

Integrated Genomic and Greenhouse Assessment of a Novel Plant Growth-Promoting Rhizobacterium for Tomato Plant

Frontiers in Plant Science, 2021

Plant growth promoting rhizobacteria (PGPR) can display several plant-beneficial properties, including support to plant nutrition, regulation of plant growth, and biocontrol of pests. Mechanisms behind these effects are directly related to the presence and expression of specific genes, and different PGPR strains can be differentiated by the presence of different genes. In this study we reported a comprehensive evaluation of a novel PGPR Klebsiella variicola UC4115 from the field to the lab, and from the lab to the plant. The isolate from tomato field was screened in-vitro for different activities related to plant nutrition and growth regulation as well as for antifungal traits. We performed a functional annotation of genes contributing to plant-beneficial functions previously tested in-vitro. Furthermore, the in-vitro characterization, the whole genome sequencing and annotation of K. variicola UC4115, were compared with the well-known PGPR Azospirillum brasilense strain Sp7. This no...

Whole Genome Sequencing and Analysis of Plant Growth Promoting Bacteria Isolated from the Rhizosphere of Plantation Crops Coconut, Cocoa and Arecanut

PLoS ONE, 2014

Coconut, cocoa and arecanut are commercial plantation crops that play a vital role in the Indian economy while sustaining the livelihood of more than 10 million Indians. According to 2012 Food and Agricultural organization's report, India is the third largest producer of coconut and it dominates the production of arecanut worldwide. In this study, three Plant Growth Promoting Rhizobacteria (PGPR) from coconut (CPCRI-1), cocoa (CPCRI-2) and arecanut (CPCRI-3) characterized for the PGP activities have been sequenced. The draft genome sizes were 4.7 Mb (56% GC), 5.9 Mb (63.6% GC) and 5.1 Mb (54.8% GB) for CPCRI-1, CPCRI-2, CPCRI-3, respectively. These genomes encoded 4056 (CPCRI-1), 4637 (CPCRI-2) and 4286 (CPCRI-3) protein-coding genes. Phylogenetic analysis revealed that both CPCRI-1 and CPCRI-3 belonged to Enterobacteriaceae family, while, CPCRI-2 was a Pseudomonadaceae family member. Functional annotation of the genes predicted that all three bacteria encoded genes needed for mineral phosphate solubilization, siderophores, acetoin, butanediol, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinase, phenazine, 4-hydroxybenzoate, trehalose and quorum sensing molecules supportive of the plant growth promoting traits observed in the course of their isolation and characterization. Additionally, in all the three CPCRI PGPRs, we identified genes involved in synthesis of hydrogen sulfide (H 2 S), which recently has been proposed to aid plant growth. The PGPRs also carried genes for central carbohydrate metabolism indicating that the bacteria can efficiently utilize the root exudates and other organic materials as energy source. Genes for production of peroxidases, catalases and superoxide dismutases that confer resistance to oxidative stresses in plants were identified. Besides these, genes for heat shock tolerance, cold shock tolerance and glycine-betaine production that enable bacteria to survive abiotic stress were also identified.

Evaluating soil rhizobacteria for their ability to enhance plant growth and tuber yield in potato

Annals of Applied Biology, 2010

The objectives of this study were to identify promising microorganisms to improve potato productivity in low-input systems of tropical highlands and to compare results from in vitro, greenhouse and field experiments to advance the development of a screening method for rhizobacteria and develop an efficient assessment of their effect on plant growth in field conditions. A total of 150 bacterial strains were screened in vitro, in greenhouse and field trials. The series of experiments confirmed the plant growth-promoting ability of a range of rhizobacteria. Although in vitro and greenhouse results were promising, the field experiment showed variability and the results require further verification. The in vitro tests might have limited value for screening as no correlation could be found between in vitro tests and pot trial results. However, trials in controlled conditions produced insights into the mechanisms causing better plant growth in potato, such as early tuberisation, fast development of leaf area and probably greater photosynthetic rates.

Molecular Characterization of Indigenous Rhizobia from Kenyan Soils Nodulating with Common Beans

International Journal of Molecular Sciences

Kenya is the seventh most prominent producer of common beans globally and the second leading producer in East Africa. However, the annual national productivity is low due to insufficient quantities of vital nutrients and nitrogen in the soils. Rhizobia are symbiotic bacteria that fix nitrogen through their interaction with leguminous plants. Nevertheless, inoculating beans with commercial rhizobia inoculants results in sparse nodulation and low nitrogen supply to the host plants because these strains are poorly adapted to the local soils. Several studies describe native rhizobia with much better symbiotic capabilities than commercial strains, but only a few have conducted field studies. This study aimed to test the competence of new rhizobia strains that we isolated from Western Kenya soils and for which the symbiotic efficiency was successfully determined in greenhouse experiments. Furthermore, we present and analyze the whole-genome sequence for a promising candidate for agricultu...

Isolation of Bacteria from the Rhizosphere and Rhizoplane of Potato (Solanum tuberosum) Grown in Two Distinct Soils Using Semi Selective Media and Characterization of Their Biological Properties

American Journal of Potato Research, 2012

The objective of this study was to isolate and characterize genera of bacteria that had been identified as being the most common residents in the rhizosphere of potato using cpn60 pyrosequencing analysis. Using various semiselective media targeted to specific genera of interest, 200 isolates of bacteria were collected from rhizosphere soil and the rhizoplane of potatoes grown in soils obtained from a potato farm in Prince Edward Island and Ontario. The procedures employed were successful in selecting out representative bacteria suggested by pyrosequencing to be common in the potato rhizoplane. Results of 16S rRNA sequencing showed that 44 % of the isolates represented new species. All isolates were tested for biological and biochemical activities including phosphate solubilization, phytohormone metabolism, nitrogen fixation, antibiosis, exoenzyme production, and production of acyl-homoserine lactones. Massilia spp. and Chryseobacterium spp. showed the strongest exoenzyme activities. A greater proportion of Agrobacterium tumefaciens rhizosphere strains produced acyl-homoserine lactones compared to rhizoplane strains. Pseudomonas spp. and Lysobacter capsici had the greatest antagonistic activity on laboratory media towards six potato pathogens, and also significantly decreased disease in plants grown in pathogen-infested soil. Four isolates significantly increased growth of potato nodal explants in tissue culture. By using preliminary results derived from next generation sequencing technology and a targeted cultural technique, we were able to gain a better understanding of the biological activities of the most abundant bacterial species in the rhizosphere and rhizoplane of a cultivated crop.

Sustainable Food Production Systems for Climate Change Mitigation: Indigenous Rhizobacteria for Potato Bio-fertilization in Tanzania

African Handbook of Climate Change Adaptation

The global rise in human population has led to the intensification of agricultural activities to meet the ever-rising food demand. The potato (Solanum tuberosum L.) is a crop with the potential to tackle food security issues in developing countries due to its short growth cycle and high nutrient value. However, its cultivation is heavily dependent on artificial fertilizers for yield maximization which culminates in global warming and other environmental problems. There is need, therefore, for its alternative fertilization technologies to mitigate climate change. This study evaluated the potential of indigenous rhizobacteria for potato cropping in Tanzania. Ten potato rhizobacterial isolates belonging to Enterobacter, Klebsiella, Citrobacter, Serratia, and Enterobacter genera were obtained from a previous collection from different agro-ecological areas in Tanzania. The isolates were characterized culturally, microscopically, biochemically, and by their carbohydrate utilization patter...