Stochastic Navier-Stokes equation on a 2D rotating sphere with stable L'evy noise: existence and uniqueness of weak and strong solutions (original) (raw)
2018, arXiv: Analysis of PDEs
Abstract
In this paper we prove the existence and uniqueness of a strong solution (in PDE sense) to the stochastic Navier-Stokes equations on the rotating 2-dimensional unit sphere perturbed by stable L\'evy noise. This strong solution turns out to exist globally in time.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (36)
- Sergio Albeverio, Franco Flandoli, and Yakov G. Sinai. SPDE in hydrodynamic: recent progress and prospects, volume 1942. Springer-Verlag, Berlin; Fondazione C.I.M.E., Florence, 2008.
- Z. Brzeźniak, B. Goldys, and Q. T. Le Gia. Random dynamical systems generated by stochastic Navier-Stokes equations on a rotating sphere. J. Math. Anal. Appl., 426(1):505-545, 2015.
- Z. Brzeźniak, B. Goldys, and Q. T. Le Gia. Random attractors for the stochastic navier-stokes equations on the 2d unit sphere. Journal of Mathematical Fluid Mechanics, November 2017.
- Zdzisław Brzeźniak. Stochastic partial differential equations in M-type 2 Banach spaces. Potential Anal., 4(1):1-45, 1995.
- Zdzisław Brzeźniak, Marek Capiński, and Franco Flandoli. Pathwise global attractors for stationary random dynamical systems. Probab. Theory Related Fields, 95(1):87-102, 1993.
- Zdzislaw Brzeźniak, Beniamin Goldys, and Quoc Thong Le Gia. Random attractors for the stochastic navier-stokes equations on the 2d unit sphere. 02 2014.
- Zdzisław Brzeźniak and Yuhong Li. Asymptotic compactness and absorbing sets for 2d stochastic navier-stokes equations on some unbounded domains. Transactions of the American Mathematical Society, 358(12):5587-5629, 2006.
- Zdzisław Brzeźniak and Jan van Neerven. Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ., 43(2):261-303, 2003.
- Zdzisław Brzeźniak and Jerzy Zabczyk. Regularity of Ornstein-Uhlenbeck processes driven by a Lévy white noise. Potential Anal., 32(2):153-188, 2010.
- Chongsheng Cao, Mohammad A. Rammaha, and Edriss S. Titi. The Navier-Stokes equations on the rotating 2-D sphere: Gevrey regularity and asymptotic degrees of freedom. Z. Angew. Math. Phys., 50(3):341-360, 1999.
- Anna Chojnowska-Michalik. On processes of Ornstein-Uhlenbeck type in Hilbert space. Stochastics, 21(3):251- 286, 1987.
- Peter Constantin and Ciprian Foias. Navier-Stokes equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1988.
- Hans Crauel and Franco Flandoli. Attractors for random dynamical systems. Probab. Theory Related Fields, 100(3):365-393, 1994.
- G. Da Prato and J. Zabczyk. Ergodicity for infinite-dimensional systems, volume 229 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1996.
- Zhao Dong, Lihu Xu, and Xicheng Zhang. Exponential ergodicity of stochastic burgers equations driven by Îś-stable processes. 08 2012.
- Bruce K. Driver. Curved Wiener space analysis. In Real and stochastic analysis, Trends Math., pages 43-198. Birkhäuser Boston, Boston, MA, 2004.
- C. Foias, O. Manley, R. Rosa, and R. Temam. Navier-Stokes equations and turbulence, volume 83. Cambridge University Press, Cambridge, 2001.
- Alexander Grigor'yan. Heat kernel and analysis on manifolds, volume 47 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI; International Press, Boston, MA, 2009.
- Edwin Hewitt and Karl Stromberg. Real and abstract analysis. Springer-Verlag, New York-Heidelberg, 1975.
- A. A. Il′in. Navier-Stokes and Euler equations on two-dimensional closed manifolds. Mat. Sb., 181(4):521-539, 1990.
- A. A. Il′in. Partially dissipative semigroups generated by the Navier-Stokes system on two-dimensional manifolds, and their attractors. Mat. Sb., 184(1):55-88, 1993.
- A. A. Il′in and A. N. Filatov. Unique solvability of the Navier-Stokes equations on a two-dimensional sphere. Dokl. Akad. Nauk SSSR, 301(1):18-22, 1988.
- Q. T. Le Gia. Galerkin approximation for elliptic PDEs on spheres. J. Approx. Theory, 130(2):125-149, 2004.
- J.-L. Lions and E. Magenes. Problèmes aux limites non homogènes et applications. Vol. 3. Dunod, Paris, 1970. Travaux et Recherches Mathématiques, No. 20.
- Jacques-Louis Lions and Giovanni Prodi. Un théoreme d'existence et unicité dans les équations de navier-stokes en dimension 2. CR Acad. Sci. Paris, 248(3519-3521):8, 1959.
- Yong Liu and Jianliang Zhai. A note on time regularity of generalized ornstein-uhlenbeck processes with cylin- drical stable noise. Comptes Rendus Mathematique, 350(1-2):97-100, 2012.
- AL Neidhardt. Stochastic integrals in 2-uniformly smooth Banach spaces. PhD thesis, Ph. D. Thesis, University of Wisconsin, 1978.
- A. Pazy. Semigroups of linear operators and applications to partial differential equations, volume 44 of Applied Mathematical Sciences. Springer-Verlag, New York, 1983.
- S. Peszat and J. Zabczyk. Stochastic partial differential equations with Lévy noise, volume 113 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2007. An evolution equation approach.
- Enrico Priola and Jerzy Zabczyk. Structural properties of semilinear SPDEs driven by cylindrical stable processes. Probab. Theory Related Fields, 149(1-2):97-137, 2011.
- Yuri N. Skiba. On the existence and uniqueness of solution to problems of fluid dynamics on a sphere. J. Math. Anal. Appl., 388(1):627-644, 2012.
- Hiroki Tanabe, Nobumichi Mugibayashi, and H Haneda. Equations of evolution, volume 6. Pitman London, 1979.
- R. Temam and M. Ziane. Navier-Stokes equations in thin spherical domains. In Optimization methods in partial differential equations (South Hadley, MA, 1996), volume 209, pages 281-314. Amer. Math. Soc., Providence, RI, 1997.
- Roger Temam. Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Ams- terdam, 1977. Studies in Mathematics and its Applications, Vol. 2.
- Hans Triebel. Interpolation theory, function spaces, differential operators. VEB Deutscher Verlag der Wis- senschaften, Berlin, 1978.
- Lihu Xu. Ergodicity of the stochastic real Ginzburg-Landau equation driven by α-stable noises. Stochastic Process. Appl., 123(10):3710-3736, 2013.