Different Authentication Properties and a Signcryption Scheme Revisited (original) (raw)

A New Approach to Keep the Privacy Information of the Signer in a Digital Signature Scheme

Information

In modern applications, such as Electronic Voting, e-Health, e-Cash, there is a need that the validity of a signature should be verified by only one responsible person. This is opposite to the traditional digital signature scheme where anybody can verify a signature. There have been several solutions for this problem, the first one is we combine a signature scheme with an encryption scheme; the second one is to use the group signature; and the last one is to use the strong designated verifier signature scheme with the undeniable property. In this paper, we extend the traditional digital signature scheme to propose a new solution for the aforementioned problem. Our extension is in the sense that only a designated verifier (responsible person) can verify a signer’s signature, and if necessary (in case the signer refuses to admit his/her signature) the designated verifier without revealing his/her secret key is able to prove to anybody that the signer has actually generated the signatu...

A Secure Designated Signature Scheme

Annotation: This paper presents a threshold designated receiver signature scheme that includes certain characteristic in which the signature can be verified by the assistance of the signature recipient only. The aim of the proposed signature scheme is to protect the privacy of the signature recipient. However, in many applications of such signatures, the signed document holds data which is sensitive to the recipient personally and in these applications usually a signer is a single entity but if the document is on behalf of the company the document may need more than one signer. Therefore, the threshold technique is employed to answer this problem. In addition, we introduce its use to shared signature scheme by threshold verification. The resultant scheme is efficient and dynamic.

Efficient Designated Confirmer Signatures Without Random Oracles or General Zero-Knowledge Proofs (Extended Abstract

Most prior designated confirmer signature schemes either prove security in the random oracle model (ROM) or use general zeroknowledge proofs for NP statements (making them impractical). By slightly modifying the definition of designated confirmer signatures, Goldwasser and Waisbard presented an approach in which the Confirm and ConfirmedSign protocols could be implemented without appealing to general zero-knowledge proofs for NP statements (their Disavow protocol still requires them). The Goldwasser-Waisbard approach could be instantiated using Cramer-Shoup, GMR, or Gennaro-Halevi-Rabin signatures. In this paper, we provide an alternate generic transformation to convert any signature scheme into a designated confirmer signature scheme, without adding random oracles. Our key technique involves the use of a signature on a commitment and a separate encryption of the random string used for commitment. By adding this "layer of indirection," the underlying protocols in our schemes admit efficient instantiations (i.e., we can avoid appealing to general zero-knowledge proofs for NP statements) and furthermore the performance of these protocols is not tied to the choice of underlying signature scheme. We illustrate this using the Camenisch-Shoup variation on Paillier's cryptosystem and Pedersen commitments. The confirm protocol in our resulting scheme requires 10 modular exponentiations (compared to 320 for Goldwasser-Waisbard) and our disavow protocol requires 41 modular exponentiations (compared to using a general zero-knowledge proof for Goldwasser-Waisbard). Previous schemes use the encryption of a signature paradigm, and thus run into problems when trying to implement the confirm and disavow protocols efficiently.

Identity Based Public Verifiable Signcryption Scheme

2010

Signcryption as a cryptographic primitive that offers both confidentiality and authentication simultaneously. Generally, in signcryption schemes, the message is hidden and thus the validity of the signcryption can be verified only after the unsigncryption process. Thus, a third party will not be able to verify whether the signcryption is valid or not. Signcryption schemes that allow any one to verify the validity of signcryption without the knowledge of the message are called public verifiable signcryption schemes. Third party verifiable signcryption schemes allow the receiver of a signcryption, to convince a third party that the signcryption is valid, by providing some additional information along with the signcryption. This information can be anything other than the receiver’s private key and the verification may or may not require the exposure of the corresponding message. This paper shows the security weaknesses in two such existing schemes namely [14] and [4]. The scheme in [14] is Public Key Infrastructure (PKI) based scheme and the scheme in [4] is an identity based scheme. More specifically, [14] is based on elliptic curve digital signature algorithm (ECDSA). We also, provide a new identity based signcryption scheme that provides both public verifiability and third party verification. We formally prove the security of the newly proposed scheme in the random oracle model.

The Joint Signature and Encryption Revisited ∗

2013

We study the Sign then Encrypt, Commit then Encrypt and Sign, and Encrypt then Sign paradigms in the context of three cryptographic primitives, namely designated confirmer signatures, signcryption, and verifiably encrypted signatures. Our study identifies weaknesses in those paradigms which impose the use of expensive encryption (as a building block) in order to meet a reasonable security level. Next, we propose some optimizations which annihilate the found weaknesses and allow consequently cheap encryption without compromising the overall security. Our optimizations further enjoy verifiability, a property profoundly needed in many real-life applications of the studied primitives.

Unconditionally Secure Signatures

IACR Cryptol. ePrint Arch., 2016

Digital signatures are one of the most important cryptographic primitives. In this work we construct an information-theoretically secure signature scheme which, unlike prior schemes, enjoys a number of advantageous properties such as short signature length and high generation efficiency, to name two. In particular, we extend symmetric-key message authentication codes (MACs) based on universal hashing to make them transferable, a property absent from traditional MAC schemes. Our main results are summarised as follows. – We construct an unconditionally secure signature scheme which, unlike prior schemes, does not rely on a trusted third party or anonymous channels. In our scheme, a sender shares with each of the remaining protocol participants (or recipients) a set of keys (or hash functions) from a family of universal hash functions. Also, the recipients share with each other a random portion of the keys that they share with the sender. A signature for a message is a vector of tags g...

On Generic Constructions of Designated Confirmer Signatures (The “Encryption of a Signature ” Paradigm Revisited)

2012

Abstract. Designated Confirmer signatures were introduced to limit the verification property inherent to digital signatures. In fact, the verification in these signatures is replaced by a confirmation/denial protocol between the designated confirmer and some verifier. An intuitive way to obtain such signatures consists in first generating a digital signature on the message to be signed, then encrypting the result using a suitable encryption scheme. This approach, referred to as the “encryption of a signature ” paradigm, requires the constituents (encryption and signature schemes) to meet the highest security notions in order to achieve secure constructions. In this paper, we revisit this method and establish the necessary and sufficient assumptions on the building blocks in order to attain secure confirmer signatures. Our study concludes that the paradigm, used in its basic form, cannot allow a class of encryption schemes, which is vital for the efficiency of the confirmation/denial...

On the Provable Security of Multi-Receiver Signcryption Schemes

In ATC 2007, an identity based signcryption scheme for multiple receivers was proposed by Yu et al. In this paper, we first show that Yu et al.'s signcryption scheme is insecure by demonstrating an universal forgeability attack -anyone can generate a valid signcryption on any message on behalf of any legal user for any set of legal receivers without knowing the secret keys of the legal users. Also, we point out a subtle flaw in the proof of confidentiality given by Yu et al. and show that the scheme does not provide confidentiality. Further, we propose a corrected version of Yu et al.'s scheme and formally prove its security (confidentiality and unforgeability) under the existing security model for signcryption.

Efficient Designated Confirmer Signatures Without Random Oracles or General Zero-Knowledge Proofs

2005

Most prior designated confirmer signature schemes either prove security in the random oracle model (ROM) or use general zero-knowledge proofs for NP statements (making them impractical). By slightly modifying the definition of designated confirmer signatures, Goldwasser and Waisbard presented an approach in which the Confirm and ConfirmedSign protocols could be implemented without appealing to general zero-knowledge proofs for NP statements (their “Disavow” protocol still requires them). The Goldwasser-Waisbard approach could be instantiated using Cramer-Shoup, GMR, or Gennaro-Halevi-Rabin signatures. In this paper, we provide an alternate generic transformation to convert any signature scheme into a designated confirmer signature scheme, without adding random oracles. Our key technique involves the use of a signature on a commitment and a separate encryption of the random string used for commitment. By adding this “layer of indirection,” the underlying protocols in our schemes admit efficient instantiations (i.e., we can avoid appealing to general zero-knowledge proofs for NP statements) and furthermore the performance of these protocols is not tied to the choice of underlying signature scheme. We illustrate this using the Camenisch-Shoup variation on Paillier’s cryptosystem and Pedersen commitments. The confirm protocol in our resulting scheme requires 10 modular exponentiations (compared to 320 for Goldwasser-Waisbard) and our disavow protocol requires 41 modular exponentiations (compared to using a general zero-knowledge proof for Goldwasser-Waisbard). Previous schemes use the “encryption of a signature” paradigm, and thus run into problems when trying to implement the “confirm” and “disavow” protocols efficiently.

Certificateless signature: a new security model and an improved generic construction

Designs, Codes and Cryptography, 2007

Certificateless cryptography involves a Key Generation Center (KGC) which issues a partial key to a user and the user also independently generates an additional public/secret key pair in such a way that the KGC who knows only the partial key but not the additional secret key is not able to do any cryptographic operation on behalf of the user; and a third party who replaces the public/secret key pair but does not know the partial key cannot do any cryptographic operation as the user either. We call this attack launched by the third party as the key replacement attack. In ACISP 2004, Yum and Lee proposed a generic construction of digital signature schemes under the framework of certificateless cryptography. In this paper, we show that their generic construction is insecure against key replacement attack. In particular, we give some concrete examples to show that the security requirements of some building blocks they specified are insufficient to support some of their security claims. We then propose a modification of their scheme and show its security in a new and simplified security model. We show that our simplified definition and adversarial model not only capture all the distinct features of certificateless signature but are also more versatile when compared with all the comparable ones. We believe that the model itself is * A preliminary version of the extended abstract of partial results appeared in ACISP 2006 [9]. Girault's Level 2 security. For achieving Level 3 security, that a conventional signature scheme in Public Key Infrastructure does, we propose an extension to our definition of certificateless signature scheme and introduce an additional security model for this extension. We show that our generic construction satisfies Level 3 security after some appropriate and simple modification.