Automatic Sleep Stage Classification Using 1D Convolutional Neural Network (original) (raw)
Purpose: Sleep is one of the necessities of the body, such as eating, drinking, etc., that affects different aspects of human life. Sleep monitoring and sleep stage classification play an important role in the diagnosis of sleeprelated diseases and neurological disorders. Empirically, classification of sleep stages is a time-consuming, tedious, and complex task, which heavily depends on the experience of the experts. As a result, there is a crucial need for an automatic efficient sleep staging system. Materials and Methods: This study develops a 13-layer 1D Convolutional Neural Network (CNN) using singlechannel Electroencephalogram (EEG) signal for extracting features automatically and classifying the sleep stages. To overcome the negative effect of an imbalance dataset, we have used the Synthetic Minority Oversampling Technique (SMOTE). In our study, the single-channel EEG signal is given to a 1D CNN, without any feature extraction/selection processes. This deep network can self-le...