From random times to fractional kinetics (original) (raw)
Мiждисциплiнарнi дослiдження складних систем
Abstract
In this paper we study the effect of the subordination by a general random time-change to the solution of a model on spatial ecology in terms of its evolution density. In particular on traveling waves for a non-local spatial logistic equation. We study the Cesaro limit of the subordinated dynamics in a number of particular cases related to the considered fractional derivative making use of the Karamata-Tauberian theorem.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (51)
- T. M. Atanackovic, S. Pilipovic, and D. Zorica. Time distributed- order diffusion-wave equation. I., II. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, volume 465, pages 1869-1891, 1893-1917. The Royal Society, 2009.
- E. G. Bazhlekova. Subordination principle for fractional evolution equations. Fract. Calc. Appl. Anal., 3(3):213-230, 2000.
- E. G. Bazhlekova. Fractional Evolution Equations in Banach Spaces. PhD thesis, University of Eindhoven, 2001.
- E. Bazhlekova. Subordination principle for a class of fractional order differential equations. Mathematics, 3(2):412-427, 2015.
- N. H. Bingham. Limit theorems for occupation times of Markov processes. Z. Wahrsch. verw. Gebiete, 17:1-22, 1971.
- N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular varia- tion, volume 27 of Encyclopedia of Mathematics and its Applica- tions. Cambridge University Press, Cambridge, 1987.
- S. Bochner. Harmonic Analysis and the Theory of Probability. Univ. California Press, Berkeley, 1955.
- N. N. Bogoliubov. Problems of a dynamical theory in statistical physics. Gostekhisdat, Moskau, 1946. In Russian. English trans- lation in J. de Boer and G. E. Uhlenbeck, editors, Studies in Statistical Mechanics, volume 1, pages 1-118, Amsterdam, 1962. North-Holland.
- B. Bolker and S. W. Pacala. Using moment equations to under- stand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol., 52(3):179-197, 1997.
- L. Bondesson, G. K. Kristiansen, and F. W. Steutel. Infinite divisibility of random variables and their integer parts. Statist. Probab. Lett., 28:271-278, 1996.
- Zhen-Qing Chen, Panki Kim, Takashi Kumagai, and Jian Wang, Heat kernel estimates for time fractional equations. Forum Math., published online 2018-02-16.
- J. L. Da Silva, Y. G. Kondratiev, and P. Tkachov. Fractional kinetics in a spatial ecology model. Meth. Funct. Anal. Topology, 24(3):275-287,2018.
- V. Daftardar-Gejji and S. Bhalekar. Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl., 345(2):754-765, 2008.
- S. D. Eidelman, S. D. Ivasyshen, and A. N. Kochubei. Analytic Methods in the Theory of Differential and Pseudo-Differential Equations of Parabolic Type, volume 152. Springer Science & Business Media, 2004.
- D. Finkelshtein, Y. Kondratiev, and O. Kutoviy. Individual based model with competition in spatial ecology. SIAM J. Math. Anal., 41(1):297-317, 2009.
- D. L. Finkelshtein, Y. G. Kondratiev, and O. Kutoviy. Vlasov scaling for stochastic dynamics of continuous systems. J. Stat. Phys., 141(1):158-178, October 2010.
- D. Finkelshtein, Y. G. Kondratiev, and O. Kutoviy. Semigroup approach to birth-and-death stochastic dynamics in continuum. J. Funct. Anal., 262(3):1274-1308, 2012.
- D. Finkelshtein, Y. G. Kondratiev, Y. Kozitsky, and O. Ku- toviy. The statistical dynamics of a spatial logistic model and the related kinetic equation. Math. Models Methods Appl. Sci., 25(02):343-370, 2015.
- D. L. Finkelshtein, Y. G. Kondratiev, and P. Tkachov. Doubly nonlocal Fisher-KPP equation: Existence and properties of trav- eling waves. ArXiv:1804.10258v1, April 2018.
- N. Fournier and S. Méléard. A microscopic probabilistic descrip- tion of a locally regulated population and macroscopic approxi- mations. Ann. Appl. Probab., pages 1880-1919, 2004.
- R. Gorenflo, A. A. Kilbas, F. Mainardi, and V. R. Sergei. Mittag- Leffler Functions, Related Topics and Applications. Springer, 2014.
- G. Gripenberg. Volterra integro-differential equations with accre- tive nonlinearity. J. Differential Equations, 60(1):57-79, 1985.
- R. Gorenflo and S. Umarov. Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations, Part one. Z. Anal. Anwend., 24(3):449-466, 2005.
- A. Hanyga. Anomalous diffusion without scale invariance. J. Phys. A: Mat. Theor., 40(21):5551, 2007.
- M. J. Karamata. Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. France, 61:55-62, 1933.
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo. Theory and Applications of Fractional Differential Equations, volume 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Am- sterdam, 2006.
- A. N. Kochubei. Distributed-order calculus: An operator- theoretic interpretation. Ukrainian Math. J., 60(4):551-562, 2008.
- A. N. Kochubei. Distributed order calculus and equations of ultraslow diffusion. J. Math. Anal. Appl., 340(1):252-281, 2008.
- A. N. Kochubei. General fractional calculus, evolution equa- tions, and renewal processes. Integral Equations Operator Theory, 71(4):583-600, October 2011.
- A. N. Kochubei and Y. G. Kondratiev. Fractional kinetic hier- archies and intermittency. Kinet. Relat. Models 10 (2017), no. 3, 725-740.
- V. N. Kolokoltsov. Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics. Theory Probab. Appl., 53(4), 594-609, 2009.
- V. N. Kolokoltsov. Markov Processes, Semigroups and generators, volume 38. Walter de Gruyter, 2011.
- T. Kolsrud. On a class of probabilistic integrodifferential equa- tions. In: Ideas and Methods in Mathematics and Physics. Vol. 1, Cambridge University Press, 1992, pp. 168-172.
- Y. G. Kondratiev and T. Kuna. Harmonic analysis on configu- ration spaces I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5(2):201-233, 2002.
- Y. G. Kondratiev and O. Kutoviy. On the metrical properties of the configuration space. Math. Nachr., 279(7):774-783, 2006.
- J. L. López and C. Ferreira. Asymptotic expansions of general- ized Stieltjes transforms of algebraically decaying functions. Stud. Appl. Math., 108(2):187-215, 2002.
- F. Mainardi. Fractional Calculus and Waves in Linear Viscoelas- ticity: An Introduction to Mathematical Models. World Scientific, 2010.
- M. M. Meerschaert and H.-P. Scheffler. Stochastic model for ultraslow diffusion. Stochastic Process. Appl., 116(9):1215-1235, 2006.
- M. M. Meerschaert and H.-P. Scheffler. Triangular array limits for continuous time random walks. Stochastic Process. Appl. 118, 1606-1633, 2008.
- M. M. Meerschaert, H.-P. Scheffler, P.Kern. Limit theorems for continuous-time random walks with infinite mean waiting times. J. Appl. Probab. 41 (2004), 455-466.
- R. Metzler and J. Klafter. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep., 339(1):1- 77, November 2000.
- R. Metzler and J. Klafter. The restaurant at the end of the ran- dom walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A, 37(31):R161-R208, 2004.
- A. Mura, M.S. Taqqu and F. Mainardi. Non-Markovian diffusion equations and processes: Analysis and simulations. Physica A, 387: 5033-5064, 2008.
- J. Prüss. Evolutionary Integral Equations and Applications, vol- ume 87 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1993.
- E. Ya. Riekstyn'sh. Asymptotic Expansions of Integrals, volume 3. Zinatne, Riga, 1981. Russian.
- K.-I. Sato. Lévy Processes and Infinite Divisible Distributions. Cambridge University Press, Cambridge, 1999.
- E. Seneta. Regularly Varying Functions, volume 508 of Lect. Notes Math. Springer, 1976.
- D. Sornette. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools. Springer Science & Business Media, 2006.
- R. L. Schilling, R. Song, and Z. Vondraček. Bernstein Functions: Theory and Applications. De Gruyter Studies in Mathematics. De Gruyter, Berlin, 2 edition, 2012.
- B. Toaldo. Convolution-type derivatives, hitting times of subor- dinators and time-changed C 0 -semigroups. Potential Anal. 42: 115-140, 2015.
- R. Wong. Asymptotic Approximations of Integrals, volume 34 of SIAM's Classics in Applied Mathematics. SIAM, 2001.