Intrathecal gene transfer by adeno-associated virus for pain (original) (raw)

2005, Current opinion in molecular therapeutics

Chronic pain is among the most prevalent medical problems, affecting more than half of patients with advanced cancer and many with other common diseases. Current analgesics often fail to provide satisfactory symptom relief and frequently cause severe side effects. Intrathecal (IT) gene transfer is an attractive method for pain research in rodent models, because it allows targeting of a wide variety of secretable peptides and proteins to the spinal cord, an important neural center for the processing of nociceptive signals. The potential of IT gene transfer for improving opioid therapy and for validating new analgesic targets, such as cytokines involved in spinal glial activation, is discussed. The IT space has been notoriously resistant to efficient gene transfer, limiting therapeutic gene expression to less than 2 weeks with most vector systems. Recent progress with adeno-associated virus (AAV) technology allowed efficient long-term gene expression, facilitating studies reflective o...

Current gene therapy using viral vectors for chronic pain

Molecular pain, 2015

The complexity of chronic pain and the challenges of pharmacotherapy highlight the importance of development of new approaches to pain management. Gene therapy approaches may be complementary to pharmacotherapy for several advantages. Gene therapy strategies may target specific chronic pain mechanisms in a tissue-specific manner. The present collection of articles features distinct gene therapy approaches targeting specific mechanisms identified as important in the specific pain conditions. Dr. Fairbanks group describes commonly used gene therapeutics (herpes simplex viral vector (HSV) and adeno-associated viral vector (AAV)), and addresses biodistribution and potential neurotoxicity in pre-clinical models of vector delivery. Dr. Tao group addresses that downregulation of a voltage-gated potassium channel (Kv1.2) contributes to the maintenance of neuropathic pain. Alleviation of chronic pain through restoring Kv1.2 expression in sensory neurons is presented in this review. Drs Goins...

Chapter 28 Gene Therapy for Chronic Pain Management

2013

This chapter provides an overview of the main current applications of gene therapy for chronic pain in what concerns animal studies and putative clinical applications. The value of gene therapy in unravelling neuronal brain circuits involved in pain modulation is also analysed. After alerting to the huge socioeconomic impact of chronic pain in modern societies and justifying the need to develop new avenues in pain management, we review the most common animal studies using gene therapy, which consisted on deliveries of replication-defective viral vectors at the periphery with the aim to block nociceptive transmission at the spinal cord. Departing from the data of these animal studies, we present the latest results of clinical trials using gene therapy for pain management in cancer patients. The animal studies dealing with gene delivery in pain control centres of the brain are analysed in what concerns their com‐ plexity and interest in unravelling the neurobiological mechanisms of de...

Genetic therapy for pain management

Current review of pain, 2000

Two approaches to genetic therapy for the management of chronic pain have recently been investigated in animal models of pain. First, transgene-mediated delivery of antinociceptive molecules to the cerebrospinal fluid has been performed with engineered cell lines transplanted to the subarachnoid space and with recombinant adenoviruses that transduce pia mater cells. Second, the phenotype of nociceptive neurons has been altered by recombinant herpes viruses overexpressing antinociceptive peptides or reducing expression of endogenous nociceptive molecules. Both approaches attenuate or reverse persistent nociceptive states, suggesting use in the development of genetic therapy for pain management in humans.

Gene Therapy: A Potential Approach for Cancer Pain

Pain Research and Treatment, 2011

Chronic pain is experienced by as many as of cancer patients at some point during the disease. This pain can be directly cancer related or arise from a sensory neuropathy related to chemotherapy. Major pharmacological agents used to treat cancer pain often lack anatomical specificity and can have off-target effects that create new sources of suffering. These concerns establish a need for improved cancer pain management. Gene therapy is emerging as an exciting prospect. This paper discusses the potential for viral vector-based treatment of cancer pain. It describes studies involving vector delivery of transgenes to laboratory pain models to modulate the nociceptive cascade. It also discusses clinical investigations aimed at regulating pain in cancer patients. Considering the prevalence of pain among cancer patients and the growing potential of gene therapy, these studies could set the stage for a new class of medicines that selectively disrupt nociceptive signaling with limited off-t...

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.