Entangling atoms and ions in dissipative environments (original) (raw)

Steady-state entanglement for distant atoms by dissipation in coupled cavities

Physical Review A, 2011

We propose a scheme for the generation of entangled states for two atoms trapped in separate cavities coupled to each other. The scheme is based on the competition between the unitary dynamics induced by the classical fields and the collective decays induced by the dissipation of two delocalized field modes. Under certain conditions, the symmetric or asymmetric entangled state is produced in the steady state. The analytical result shows that the distributed steady entanglement can be achieved with high fidelity independent of the initial state, and is robust against parameter fluctuations. We also find out that the linear scaling of entanglement fidelity has a quadratic improvement compared to distributed entangled state preparation protocols based on unitary dynamics.

Deterministic creation of stationary entangled states by dissipation

Physical Review A, 2010

We propose a practical physical system for creation of a stationary entanglement by dissipation without employing the environment engineering techniques. The system proposed is composed of two perfectly distinguishable atoms, through their significantly different transition frequencies, with only one atom addressed by an external laser field. We show that the arrangement would easily be realized in practice by trapping the atoms at the distance equal to the quarter-wavelength of a standing-wave laser field and locating one of the atoms at a node and the other at the successive antinode of the wave. The undesirable dipole-dipole interaction between the atoms, that could be large at this small distance, is adjusted to zero by a specific initial preparation of the atoms or by a specific polarization of the atomic dipole moments. Following this arrangement, we show that the dissipative relaxation can create a stationary entanglement on demand by tuning the Rabi frequency of the laser field to the difference between the atomic transition frequencies. The laser field dresses the atom and we identify that the entangled state occurs when the frequency of one of the Rabi sidebands of the driven atom tunes to frequency of the undriven atom. It is also found that this system behaviors as a cascade open system where the fluorescence from the dressed atom drives the other atom with no feedback.

Detection-Enhanced Steady State Entanglement with Ions

Physical Review Letters, 2014

Driven dissipative steady state entanglement schemes take advantage of coupling to the environment to robustly prepare highly entangled states. We present a scheme for two trapped ions to generate a maximally entangled steady state with fidelity above 0.99, appropriate for use in quantum protocols. Furthermore, we extend the scheme by introducing detection of our dissipation process, significantly enhancing the fidelity. Our scheme is robust to anomalous heating and requires no sympathetic cooling.

Entanglement of trapped ions

2006

Entanglement, its generation, manipulation, measurement and fundamental understanding is at the very heart of quantum mechanics. We here report on the creation and characterization of entangled states of up to 8 trapped ions, the investigation of long-lived two-ion Bell-states and on experiments towards entangling ions and photons. *

Entanglement Generated by Dissipation and Steady State Entanglement of Two Macroscopic Objects

Physical Review Letters, 2011

Entanglement is a striking feature of quantum mechanics and an essential ingredient in most applications in quantum information. Typically, coupling of a system to an environment inhibits entanglement, particularly in macroscopic systems. Here we report on an experiment, where dissipation continuously generates entanglement between two macroscopic objects. This is achieved by engineering the dissipation using laser-and magnetic fields, and leads to robust event-ready entanglement maintained for 0.04s at room temperature. Our system consists of two ensembles containing about 10 12 atoms and separated by 0.5m coupled to the environment composed of the vacuum modes of the electromagnetic field. By combining the dissipative mechanism with a continuous measurement, steady state entanglement is continuously generated and observed for up to an hour.

Entanglement Control of Two-Level Atoms in Dissipative Cavities

2020

An open quantum bipartite system consisting of two independent two-level atoms interacting nonlinearly with a two-mode electromagnetic cavity field is investigated by proposing a suitable non-Hermitian generalization of the Hamiltonian. The mathematical procedure of obtaining the corresponding wave function of the system is clearly given. Pancharatnam phase is studied to give a precise information about the required initial system state, which is related to artificial phase jumps, to control the degree of entanglement (DEM) and get the highest concurrence. We discuss the effect of time-variation coupling, and dissipation of both atoms and cavity. The effect of the time-variation function appears as frequency modulation (FM) effect in the radio waves. Concurrence rapidly reaches the disentangled state (death of entanglement) by increasing the effect of field decay. On the contrary, the atomic decay has no effect. 1. Inroduction Quantum systems promise enhanced capabilities in sensing, communications, and computing beyond what can be achieved with classical-based conventional technologies rather than quantum physics. Mathematical models are essential for analyzing these systems and building suitable quantum models from empirical data is an important research topic. In Dirac theory of radiation [1], he considered atoms and the radiation field with which they interact as a single system whose energy is represented by the frequency/energy of each atom solely, the frequency/energy of every mode of the applied laser field alone, and a small term is to the coupling energy between atoms and field modes. The interaction term is necessary if atoms and field modes are to affect each other. A simple model is that we consider a pendulum of resonant frequency ω 0 , which corresponds to an atom, and a vibrating string of resonant frequency ω 1 which corresponds to the radiation field. Jaynes-Cummings model (JCM) [2] is the first solvable analytical model to represent the atom-field interaction with experimental verification [3]. JCM has been subjected to intensive research in the last decades with many interesting phenomena explored [4-7]. The matter-field coupling term may be constant [8-10] or time-dependent [11,12], and that depends on the considered physical situation.

Quantum entanglement and disentanglement of multi-atom systems

Frontiers of Physics in China, 2009

We present a review of recent research on quantum entanglement, with special emphasis on entanglement between single atoms, processing of an encoded entanglement and its temporary evolution. Analysis based on the density matrix formalism are described. We give a simple description of the entangling procedure and explore the role of the environment in creation of entanglement and in disentanglement of atomic systems. A particular process we will focus on is spontaneous emission, usually recognized as an irreversible loss of information and entanglement encoded in the internal states of the system. We illustrate some certain circumstances where this irreversible process can in fact induce entanglement between separated systems. We also show how spontaneous emission reveals a competition between the Bell states of a two qubit system that leads to the recently discovered "sudden" features in the temporal evolution of entanglement. An another problem illustrated in details is a deterministic preparation of atoms and atomic ensembles in long-lived stationary squeezed states and entangled cluster states. We then determine how to trigger the evolution of the stable entanglement and also address the issue of a steered evolution of entanglement between desired pairs of qubits that can be achieved simply by varying the parameters of a given system.

Cooling atom-cavity systems into entangled states

2011

Generating entanglement by simply cooling a system into a stationary state which is highly entangled has many advantages. Schemes based on this idea are robust against parameter fluctuations, tolerate relatively large spontaneous decay rates, and achieve high fidelities independent of their initial state. A possible implementation of this idea in atom-cavity systems has recently been proposed by Kastoryano et al., [Kastoryano et al., Phys. Rev. Lett. 106, 090502 (2011)].

Entanglement and quantum computation with ions in thermal motion

Physical Review A, 2000

With bichromatic fields it is possible to deterministically produce entangled states of trapped ions. In this paper we present a unified analysis of this process for both weak and strong fields, for slow and fast gates. Simple expressions for the fidelity of creating maximally entangled states of two or an arbitrary number of ions under non-ideal conditions are derived and discussed.

Entanglement dynamics of two-bipartite system under the influence of dissipative environments

Optics Communications, 2010

An experimental scheme is suggested that permits a direct measure of entanglement of two-qubit cavity system. It is articulated on the cavity-QED technology utilizing atoms as flying qubits. With this scheme we generate two different measures of entanglement namely logarithmic negativity and concurrence. The phenomenon of sudden death entanglement (ESD) in a bipartite system subjected to dissipative environment will be examined.