Some estimates for h–p–k-refinement in Isogeometric Analysis (original) (raw)

In this paper, we propose a theoretical study of the approximation properties of NURBS spaces, which are used in Isogeometric Analysis. We obtain error estimates that are explicit in terms of the mesh-size h, the degree p and the global regularity, measured by the parameter k. Our approach covers the approximation with global regularity from C 0 up to C k-1 , with 2k -1 ≤ p. Notice that the interesting case of higher regularity, up to k = p, is still open. However, our results give an indication of the role of the smoothness k in the approximation properties, and offer a first mathematical justification of the potential of Isogeometric Analysis based on globally smooth NURBS.