Identifying Sigma 70 Promoters Using Multiple Windowing and Optimal Features (original) (raw)
Related papers
iPro70-FMWin: identifying Sigma70 promoters using multiple windowing and minimal features
Molecular genetics and genomics : MGG, 2018
In bacterial DNA, there are specific sequences of nucleotides called promoters that can bind to the RNA polymerase. Sigma70 ([Formula: see text]) is one of the most important promoter sequences due to its presence in most of the DNA regulatory functions. In this paper, we identify the most effective and optimal sequence-based features for prediction of [Formula: see text] promoter sequences in a bacterial genome. We used both short-range and long-range DNA sequences in our proposed method. A very small number of effective features are selected from a large number of the extracted features using multi-window of different sizes within the DNA sequences. We call our prediction method iPro70-FMWin and made it freely accessible online via a web application established at http://ipro70.pythonanywhere.com/server for the sake of convenience of the researchers. We have tested our method using a standard benchmark dataset. In the experiments, iPro70-FMWin has achieved an area under the curve ...
Triad pattern algorithm for predicting strong promoter candidates in bacterial genomes
BMC Bioinformatics, 2008
BACKGROUND: Bacterial promoters, which increase the efficiency of gene expression, differ from other promoters by several characteristics. This difference, not yet widely exploited in bioinformatics, looks promising for the development of relevant computational tools to search for strong promoters in bacterial genomes. RESULTS: We describe a new triad pattern algorithm that predicts strong promoter candidates in annotated bacterial genomes by matching specific patterns for the group I sigma70 factors of Escherichia coli RNA polymerase. It detects promoter-specific motifs by consecutively matching three patterns, consisting of an UP-element, required for interaction with the alpha subunit, and then optimally-separated patterns of -35 and -10 boxes, required for interaction with the sigma70 subunit of RNA polymerase. Analysis of 43 bacterial genomes revealed that the frequency of candidate sequences depends on the A+T content of the DNA under examination. The accuracy of in silico prediction was experimentally validated for the genome of a hyperthermophilic bacterium, Thermotoga maritima, by applying a cell-free expression assay using the predicted strong promoters. In this organism, the strong promoters govern genes for translation, energy metabolism, transport, cell movement, and other as-yet unidentified functions. CONCLUSION: The triad pattern algorithm developed for predicting strong bacterial promoters is well suited for analyzing bacterial genomes with an A+T content of less than 62%. This computational tool opens new prospects for investigating global gene expression, and individual strong promoters in bacteria of medical and/or economic significance
Journal of Molecular Recognition, 2018
Promoters are DNA sequences located upstream of the transcription start site of genes. In bacteria, the RNA polymerase enzyme requires additional subunits, called sigma factors (σ) to begin specific gene transcription in distinct environmental conditions. Currently, promoter prediction still poses many challenges due to the characteristics of these sequences. In this paper, the nucleotide content of Escherichia coli promoter sequences, related to five alternative σ factors, was analyzed by a machine learning technique in order to provide profiles according to the σ factor which recognizes them. For this, the clustering technique was applied since it is a viable method for finding hidden patterns on a data set. As a result, 20 groups of sequences were formed, and, aided by the Weblogo tool, it was possible to determine sequence profiles. These found patterns should be considered for implementing computational prediction tools. In addition, evidence was found of an overlap between the...