HMM-Based Dynamic Mapping with Gaussian Random Fields (original) (raw)
This paper focuses on the mapping problem for mobile robots in dynamic environments where the state of every point in space may change, over time, between free or occupied. The dynamical behaviour of a single point is modelled by a Markov chain, which has to be learned from the data collected by the robot. Spatial correlation is based on Gaussian random fields (GRFs), which correlate the Markov chain parameters according to their physical distance. Using this strategy, one point can be learned from its surroundings, and unobserved space can also be learned from nearby observed space. The map is a field of Markov matrices that describe not only the occupancy probabilities (the stationary distribution) as well as the dynamics in every point. The estimation of transition probabilities of the whole space is factorised into two steps: The parameter estimation for training points and the parameter prediction for test points. The parameter estimation in the first step is solved by the expe...