Update of Neuropathology and Neurological Recovery After Traumatic Brain Injury (original) (raw)

Cellular and subcellular change evoked by diffuse traumatic brain injury: a complex web of change extending far beyond focal damage

Progress in Brain Research, 2007

Until recently, our understanding of the cellular and subcellular changes evoked by diffuse traumatic brain injury has been framed in the context of primary focal injury. In this regard, the ensuing cell death cascades were linked to contusional-mediated changes associated with frank hemorrhage and ischemia, and these were assumed to contribute to the observed apoptotic and necrotic neuronal death. Little consideration was given to the potential that other non-contusional cell death cascades could have been triggered by the diffuse mechanical forces of injury. While the importance of these classical, contusion-related apoptotic and necrotic cell death cascades cannot be discounted with diffuse injury, more recent information suggests that the mechanical force of injury itself can diffusely porate the neuronal plasmalemma and its axolemmal membranes, evoking other forms of cellular response that can contribute to cell injury or death. In this regard, the duration of the membrane alteration appears to be a dependent factor, with enduring membrane change, potentially leading to irreversible damage, whereas more transient membrane perturbation can be followed by cell membrane resealing associated with recovery and/or adaptive change. With more enduring mechanical membrane perturbation, it appears that some of the traditional death cascades involving the activation of cysteine proteases are at work. Equally important, non-traditional pathways involving the lysosomal dependent release of hydrolytic enzymes may also be players in the ensuing neuronal death. These mechanically related factors that directly impact upon the neuronal somata may also be influenced by concomitant and/or secondary axotomy-mediated responses. This axonal injury, although once thought to involve a singular intraaxonal response to injury, is now known to be more complex, reflecting differential responses to injuries of varying severity. Moreover, it now appears that fiber size and type may also influence the axon's reaction to injury. In sum, this review explicates the complexity of the cellular and subcellular responses evoked by diffuse traumatic brain injury in both the neuronal somata and its axonal appendages. This review further illustrates that our once simplistic views framed by evidence based upon contusional and/or ischemic change do not fully explain the complex repertoire of change evoked by diffuse traumatic brain injury.

The neuropathology of traumatic brain injury

Handbook of clinical neurology, 2015

Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild trau...

West Indian Med J 2012; 61 (7): 751 Pathophysiology of Neurodegeneration Following Traumatic Brain Injury

Acute neuropathological conditions, including brain and spinal cord trauma, are leading causes of death and disabilities worldwide, especially in children and young adults. The causes of brain and spinal cord injuries include automobile accidents, accidents during recreational activities, falls and violent attacks. In the United States of America alone, around 1.7 million people each year seek medical care for some kind of head injury. About fifty-two thousand of these people will die, while the same number will present with permanent functional disability. Considering the high worldwide prevalence of these acute pathological conditions, research on the mechanisms underlying central nervous system damage is of extreme importance. Nowadays, a number of experimental models of acute neural disorders have been developed and the mechanisms of tissue loss have been investigated. These mechanisms include both primary and secondary pathological events contributing to tissue damage and functional impairment. The main secondary pathological mechanisms encompass excitotoxicity, ionic imbalances, inflammatory response, oxidative stress and apoptosis. The proper elucidation of how neural tissue is lost following brain and spinal cord trauma is fundamental to developing effective therapies to human diseases. The present review evaluates the main mechanisms of secondary tissue damage following traumatic brain and spinal cord injuries.

Pathophysiology of neurodegeneration following traumatic brain injury

The West Indian Medical Journal, 2012

Acute neuropathological conditions, including brain and spinal cord trauma, are leading causes of death and disabilities worldwide, especially in children and young adults. The causes of brain and spinal cord injuries include automobile accidents, accidents during recreational activities, falls and violent attacks. In the United States of America alone, around 1.7 million people each year seek medical care for some kind of head injury. About fifty-two thousand of these people will die, while the same number will present with permanent functional disability. Considering the high worldwide prevalence of these acute pathological conditions, research on the mechanisms underlying central nervous system damage is of extreme importance. Nowadays, a number of experimental models of acute neural disorders have been developed and the mechanisms of tissue loss have been investigated. These mechanisms include both primary and secondary pathological events contributing to tissue damage and functional impairment. The main secondary pathological mechanisms encompass excitotoxicity, ionic imbalances, inflammatory response, oxidative stress and apoptosis. The proper elucidation of how neural tissue is lost following brain and spinal cord trauma is fundamental to developing effective therapies to human diseases. The present review evaluates the main mechanisms of secondary tissue damage following traumatic brain and spinal cord injuries.

Traumatic Brain Injury pathophysiology and treatments: early, intermediate, and late phases post-injury

International journal of molecular sciences, 2014

Traumatic Brain Injury (TBI) affects a large proportion and extensive array of individuals in the population. While precise pathological mechanisms are lacking, the growing base of knowledge concerning TBI has put increased emphasis on its understanding and treatment. Most treatments of TBI are aimed at ameliorating secondary insults arising from the injury; these insults can be characterized with respect to time post-injury, including early, intermediate, and late pathological changes. Early pathological responses are due to energy depletion and cell death secondary to excitotoxicity, the intermediate phase is characterized by neuroinflammation and the late stage by increased susceptibility to seizures and epilepsy. Current treatments of TBI have been tailored to these distinct pathological stages with some overlap. Many prophylactic, pharmacologic, and surgical treatments are used post-TBI to halt the progression of these pathologic reactions. In the present review, we discuss the...

Light and electron microscopic assessment of progressive atrophy following moderate traumatic brain injury in the rat

Acta Neuropathologica, 2005

The presence of progressive white matter atrophy following traumatic brain injury (TBI) has been reported in humans as well as in animal models. However, a quantitative analysis of progressive alterations in myelinated axons and other cellular responses to trauma has not been conducted. This study examined quantitative differences in myelinated axons from several white and gray matter structures between nontraumatized and traumatized areas at several time points up to 1 year. We hypothesize that axonal numbers decrease over time within the structures analyzed, based on our previous work demonstrating shrinkage of tissue in these vulnerable areas. Intubated, anesthetized male Sprague-Dawley rats were subjected to moderate (1.8-2.2 atm) parasagittal fluid-percussion brain injury, and perfused at various intervals after surgery. Sections from the fimbria, external capsule, thalamus and cerebral cortex from the ipsilateral hemisphere of traumatized and sham-operated animals were prepared and. estimated total numbers of myelinated axons were determined by systematic random sampling. Electron micrographs were obtained for ultrastructural analysis. A significant (P<0.05) reduction in the number of myelinated axons in the traumatized hemisphere compared to control in all structures was observed. In addition, thalamic and cortical axonal counts decreased significantly (P<0.05) over time. Swollen axons and macrophage/microglia infiltration were present as late as 6 months post-TBI in various structures. This study is the first to describe quantitatively chronic axonal changes in vulnerable brains regions after injury. Based on these data, a timedependent decrease in the number of myelinated axons is seen to occur in vulnerable gray matter regions including the cerebral cortex and thalamus along with distinct morphological changes within white matter tracts after TBI. Although this progressive axonal response to TBI may include Wallerian degeneration, other potential mechanisms underlying this progressive pathological response within the white matter are discussed.

The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats

Neurobiology of Disease, 2004

Experimental models of traumatic brain injury have been developed to replicate selected aspects of human head injury, such as contusion, concussion, and/or diffuse axonal injury. Although diffuse axonal injury is a major feature of clinical head injury, relatively few experimental models of diffuse traumatic brain injury (TBI) have been developed, particularly in smaller animals such as rodents. Here, we describe the pathophysiological consequences of moderate diffuse TBI in rats generated by a newly developed, highly controlled, and reproducible model. This model of TBI caused brain edema beginning 20 min after injury and peaking at 24 h post-trauma, as shown by wet weight/dry weight ratios and diffusion-weighted magnetic resonance imaging. Increased permeability of the blood -brain barrier was present up to 4 h post-injury as evaluated using Evans blue dye. Phosphorus magnetic resonance spectroscopy showed significant declines in brain-free magnesium concentration and reduced cytosolic phosphorylation potential at 4 h post-injury. Diffuse axonal damage was demonstrated using manganese-enhanced magnetic resonance imaging, and intracerebral injection of a fluorescent vital dye (Fluoro-Ruby) at 24-h and 7-day post-injury. Morphological evidence of apoptosis and caspase-3 activation were also found in the cerebral hemisphere and brainstem at 24 h after trauma. These results show that this model is capable of reproducing major biochemical and neurological changes of diffuse clinical TBI. D 2004 Elsevier Inc. All rights reserved.