Redistribution of astrocytic glutamine synthetase in the hippocampus of chronic epileptic rats (original) (raw)

Selective deletion of glutamine synthetase in the mouse cerebral cortex induces glial dysfunction and vascular impairment that precede epilepsy and neurodegeneration

Neurochemistry international, 2018

Glutamate-ammonia ligase (glutamine synthetase; Glul) is enriched in astrocytes and serves as the primary enzyme for ammonia detoxification and glutamate inactivation in the brain. Loss of astroglial Glul is reported in hippocampi of epileptic patients, but the mechanism by which Glul deficiency might cause disease remains elusive. Here we created a novel mouse model by selectively deleting Glul in the hippocampus and neocortex. The Glul deficient mice were born without any apparent malformations and behaved unremarkably until postnatal week three. There were reductions in tissue levels of aspartate, glutamate, glutamine and GABA and in mRNA encoding glutamate receptor subunits GRIA1 and GRIN2A as well as in the glutamate transporter proteins EAAT1 and EAAT2. Adult Glul-deficient mice developed progressive neurodegeneration and spontaneous seizures which increased in frequency with age. Importantly, progressive astrogliosis occurred before neurodegeneration and was first noted in as...

Glutamine synthetase becomes nitrated and its activity is reduced during repetitive seizure activity in the pentylentetrazole model of epilepsy

Epilepsia, 2008

The astrocyte-specific glutamine synthetase (GS) plays a key role in glutamate recycling and Gamma-aminobutyric acid (GABA) metabolism. Changes in the expression or activity of GS have been proposed to contribute to epileptogenesis. The mechanisms or how and where GS may contribute to epilepsy is still a matter of discussion. Here we asked the question whether brain regions, which show an astrocytic stress response respond with alterations of GS. Biochemical and histological alterations of GS, HSP-27, and GFAP were studied after pentylenetetrazole-induced repetitive epileptic seizures (PIRS) in rats using a topographical quantification of the GS-immunoreactivity (GSIR) in relation to the focal heat shock response (HSR). Saline-treated rats served as controls and rats treated by the GS-inhibitor, L-methionine-sulfoximine (MSO) served as a positive control. No changes in the amount of GSIR and GS-protein occurred during PIRS. A significant reduction of GSIR was observed by histochemistry (in situ) and in native (nonheated) protein extracts of MSO-treated rats. In rats affected by PIRS, GS-activity showed a significant, region-specific reduction in association with a nitration of the enzyme. These results show that neither PIRS nor GS-inhibition reduced the amount of GS protein, but that MSO interferes with antibody binding to native GS. PIRS resulted in a focal increase of astrocytic stress response, whereas MSO caused a widespread, homogeneous astrocytic HSR independent from quantitative changes of GS content. In rats with PIRS the regions showing a strong glial HSR, respond with reduced GS-activity and GS-nitration, which all together are clear indicators of a nitrosative stress response.

Evidence for astrocytes as a potential source of the glutamate excess in temporal lobe epilepsy

Neurobiology of Disease, 2012

Increased extracellular brain glutamate has been implicated in the pathophysiology of human refractory temporal lobe epilepsy (TLE), but the cause of the excessive glutamate is unknown. Prior studies by us and others have shown that the glutamate degrading enzyme glutamine synthetase (GS) is deficient in astrocytes in the epileptogenic hippocampal formation in a subset of patients with TLE. We have postulated that the loss of GS in TLE leads to increased glutamate in astrocytes with elevated concentrations of extracellular glutamate and recurrent seizures as the ultimate end-points. Here we test the hypothesis that the deficiency in GS leads to increased glutamate in astrocytes. Rats were chronically infused with methionine sulfoximine (MSO, n=4) into the hippocampal formation to induce GS-deficiency and recurrent seizures. A separate group of rats was infused with 0.9% NaCl (saline) as a control (n=6). At least 10 days after the start of infusion, once recurrent seizures were established in the MSO-treated rats, the concentration of glutamate was assessed in CA1 of the hippocampal formation by immunogold electron microscopy. The concentration of glutamate was 47% higher in astrocytes in the MSO-treated vs. saline-treated rats (p=0.02), and the ratio of glutamate in astrocytes relative to axon terminals was increased by 74% in the MSO-treated rats (p=0.003). These data support our hypothesis that a deficiency in GS leads to increased glutamate in astrocytes. We additionally propose that the GSdeficient astrocytes in the hippocampal formation in TLE lead to elevated extracellular brain glutamate either through decreased clearance of extracellular glutamate or excessive release of glutamate into the extracellular space from these cells, or a combination of the two.

Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy

The Lancet, 2004

Background High extracellular glutamate concentrations have been identified as a likely trigger of epileptic seizures in mesial temporal lobe epilepsy (MTLE), but the underlying mechanism remains unclear. We investigated whether a deficiency in glutamine synthetase, a key enzyme in catabolism of extracellular glutamate in the brain, could explain the perturbed glutamate homoeostasis in MTLE. Methods The anteromedial temporal lobe is the focus of the seizures in MTLE, and surgical resection of this structure, including the hippocampus, leads to resolution of seizures in many cases. By means of immunohistochemistry, western blotting, and functional enzyme assays, we assessed the distribution, quantity, and activity of glutamine synthetase in the MTLE hippocampus.

Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy

Journal of Cerebral Blood Flow & Metabolism, 2011

The occurrence of spontaneous seizures in mesial temporal lobe epilepsy (MTLE) is preceded by a latent phase that provides a time window for identifying and treating patients at risk. However, a reliable biomarker of epileptogenesis has not been established and the underlying processes remain unclear. Growing evidence suggests that astrocytes contribute to an imbalance between excitation and inhibition in epilepsy. Here, astrocytic and neuronal neurotransmitter metabolism was analyzed in the latent phase of the kainate model of MTLE in an attempt to identify epileptogenic processes and potential biomarkers. Fourteen days after status epilepticus, [1-13C]glucose and [1,2-13C]acetate were injected and the hippocampal formation, entorhinal/piriform cortex, and neocortex were analyzed by 1H and 13C magnetic resonance spectroscopy. The 13C enrichment in glutamate, glutamine, and γ-aminobutyric acid (GABA) from [1-13C]glucose was decreased in all areas. Decreased GABA content was specific...

Astrocytic regulation of glutamate homeostasis in epilepsy

Glia, 2012

Astrocytes play a critical role in regulation of extracellular neurotransmitter levels in the central nervous system. This function is particularly prominent for the excitatory amino acid glutamate, with estimates that 80-90% of extracellular glutamate uptake in brain is through astrocytic glutamate transporters. This uptake has significance both in regulation of the potential toxic accumulation of extracellular glutamate, and in normal resupply of inhibitory and excitatory synapses with neurotransmitter. This resupply of neurotransmitter is accomplished by astroglial uptake of glutamate, transformation of glutamate to glutamine by the astrocytic enzyme glutamine synthetase, and shuttling of glutamine back to excitatory and inhibitory neurons via specialized transporters. Once in neurons, glutamine is enzymatically converted back to glutamate, which is utilized for synaptic transmission, either directly, or following decarboxylation to GABA. Many neurologic and psychiatric conditions, particularly epilepsy, are accompanied by the development of reactive gliosis, a pathology characterized by anatomical and biochemical plasticity in astrocytes, accompanied by proliferation of these cells. Among the biochemical changes evident in reactive astrocytes is a downregulation of several of the important regulators of the glutamineglutamate cycle, including glutamine synthetase, and possibly also glutamate transporters. This downregulation may have significance in contributing both to the aberrant excitability and to the altered neuropathology characterizing epilepsy. In the present review, we provide an overview of the normal function of astrocytes in regulating extracellular glutamate homeostasis, neurotransmitter supply, and excitotoxicity. We further discuss the potential role reactive gliosis may play in the pathophysiology of epilepsy.

Astrocyte dysfunction in epilepsy

Brain Research Reviews, 2010

The presence of ionotropic and metabotropic neurotransmitter receptors led to the conclusion that astrocytes are endowed with the machinery to sense and respond to neuronal activity. Recent studies have implicated astrocytes in important physiological roles in the CNS, such as synchronisation of neuronal firing, ion homeostasis, neurotransmitter uptake, glucose metabolism and regulation of the vascular tone 1 . Astrocytes are abundantly coupled through gap junctions allowing them to redistribute elevated K + from sites of excessive neuronal activity to sites of lower extracellular K + concentration. Evidence is now emerging indicating that dysfunctional astrocytes are crucial players in epilepsy. Investigation of specimens from patients with pharmacoresistant temporal lobe epilepsy and epilepsy models revealed alterations in expression, localization and function of astroglial K + and water channels, entailing impaired K + buffering. Moreover, malfunction of glutamate transporters and the astrocytic glutamate-converting enzyme, glutamine synthetase, as observed in epileptic tissue suggested that astrocyte dysfunction is causative of hyperexcitation, neurotoxicity and the generation or spread of seizure activity. Accordingly, dysfunctional astrocytes should be considered as promising targets for new therapeutic strategies. In this chapter, we will summarize current knowledge of astrocyte dysfunction in temporal lobe epilepsy and discuss putative mechanisms underlying these alterations.

Differential expression of the astrocytic enzymes 3-hydroxyanthranilic acid oxygenase, kynurenine aminotransferase and glutamine synthetase in seizure-prone and non-epileptic mice

Epilepsy Research, 1994

Previous investigations in seizure-prone mice have suggested that an abnormally elevated production of the astrocytederived neuroexcitant, quinolinic acid (QUIN), plays a role in seizure susceptibility. In order to evaluate further the role of QUIN metabolism in genetic murine seizure models, the activities of its biosynthetic enzyme 3-hydroxyanthranilic acid oxygenase (3HAO), and of two other astrocytic enzymes, kynurenine aminotransferase (KAT) and glutamine synthetase (GS), were measured in the brains of seizure-prone EL and DBA/2 mice and two non-epileptic strains (BALB/c and Swiss-Webster). 3HA0 activity was found to be markedly higher in both EL and DBA/2 mice than in the non-epileptic strains in all brain regions examined. The activity of 3HA0 was not modified by the tossing procedure employed to promote seizures in EL mice. While some strain differences were noted in the activities of KAT and GS, these enzymes did not distinguish seizure-prone from the non-epileptic mice. In order to delineate better the relationship between glial activation and 3HA0, KAT and GS, further studies were performed in the ibotenate-lesioned hippocampus. In mice (but not in rats), the activity of 3HA0 was selectively increased in gliotic tissue. These data demonstrate substantial species and strain differences in astroglial enzymes and in their response to brain injury. The observation of widespread abnormally high 3HA0 activity in two distinct seizure-prone mouse strains strengthens the hypothesis that enhanced production of QUIN contributes to seizure susceptibility in mice.

Recurrent seizures and brain pathology after inhibition of glutamine synthetase in the hippocampus in rats

Brain, 2008

An excess of extracellular glutamate in the hippocampus has been linked to the generation of recurrent seizures and brain pathology in patients with medically intractable mesial temporal lobe epilepsy (MTLE). However, the mechanism which results in glutamate excess in MTLE remains unknown. We recently reported that the glutamate-metabolizing enzyme glutamine synthetase is deficient in the hippocampus in patients with MTLE, and we postulated that this deficiency is critically involved in the pathophysiology of the disease. To further explore the role of glutamine synthetase in MTLE we created a novel animal model of hippocampal glutamine synthetase deficiency by continuous (»28 days) microinfusion of methionine sulfoximine (MSO: 0.625 to 2.5 kg/h) unilaterally into the hippocampus in rats. This treatment led to a deficiency in hippocampal glutamine synthetase activity by 82^97% versus saline. The majority (`95%) of the MSO-treated animals exhibited recurrent seizures that continued for several weeks. Some of the MSO-treated animals exhibited neuropathological features that were similar to mesial temporal sclerosis, such as hippocampal atrophy and patterned loss of hippocampal neurons. However, many MSO-treated animals displayed only minimal injury to the hippocampus, with no clear evidence of mesial temporal sclerosis. These findings support the hypothesis that a deficiency in hippocampal glutamine synthetase causes recurrent seizures, even in the absence of classical mesial temporal sclerosis, and that restoration of glutamine synthetase may represent a novel approach to therapeutic intervention in this disease.